A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-Time Imaging of Bonding in 3D-Printed Layers. | LitMetric

In recent times, 3D printing technology has revolutionized our ability to design and produce products, but optimizing the print quality can be challenging. The process of extrusion 3D printing involves pressuring molten material through a thin nozzle and depositing it onto previously extruded material. This method relies on bonding between the consecutive layers to create a strong and visually appealing final product. This is no easy task, as many parameters, such as the nozzle temperature, layer thickness, and printing speed, must be fine-tuned to achieve optimal results. In this study, a method for visualizing the polymer dynamics during extrusion is presented, giving insight into the layer bonding process. Using laser speckle imaging, the plastic flow and fusion can be resolved non-invasively, internally, and with high spatiotemporal resolution. This measurement, which is easy to perform, provides an in-depth understanding of the underlying mechanics influencing the final print quality. This methodology was tested with a range of cooling fan speeds, and the results showed increased polymer motion with lower fan speeds and, thus, explained the poor printing quality when the cooling fan was turned off. These findings show that this methodology allows for optimizing the printing settings and understanding the material behavior. This information can be used for the development and testing of novel printing materials or advanced slicing procedures. With this approach, a deeper understanding of extrusion can be built to take 3D printing to the next level.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65415DOI Listing

Publication Analysis

Top Keywords

print quality
8
cooling fan
8
fan speeds
8
printing
7
real-time imaging
4
imaging bonding
4
bonding 3d-printed
4
3d-printed layers
4
layers times
4
times printing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!