AI Article Synopsis

Article Abstract

Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500189PMC
http://dx.doi.org/10.1073/pnas.2306797120DOI Listing

Publication Analysis

Top Keywords

regulatory cells
8
play crucial
8
sperm
7
cells play
4
crucial role
4
role maintaining
4
maintaining sperm
4
sperm tolerance
4
tolerance male
4
male fertility
4

Similar Publications

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

Evaluation of Complement-Dependent Cytotoxicity Assays for Gene-Edited Pig-to-Human Xenotransplantation.

Xenotransplantation

January 2025

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).

View Article and Find Full Text PDF

Background: Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer.

View Article and Find Full Text PDF

Recently, there has been growing interest in the role of circular RNAs (circRNAs) in the progression of human cancers. Cellular senescence, a known anti-tumour mechanism, has been observed in several types of cancer. However, the regulatory interplay of circRNAs with cellular senescence in pancreatic cancer (PC) is still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!