A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effective gene delivery using size dependant nano core-shell in human cervical cancer cell lines by magnetofection. | LitMetric

Biocompatible magnetic nanoparticles are effective for gene delivery in vitro and in vivo transfection. These mediators are mainly used to deliver drugs and genes. It can also be used as probes to diagnose and treat various diseases. Magnetic nanoparticles, primarily iron oxide nanoparticles, are used in various biological applications. However, preparing stable and small-size biocompatible core-shell is crucial in site direct gene delivery. In the present study, superparamagnetic iron oxide nanoparticles were synthesized using the chemical co-precipitation method and were functionalized with starch to attain stable particles. These SPIONs were coated with polyethylenimine to give a net positive charge. The fluorescent plasmid DNA bound to the SPIONs were used as a core shell for gene delivery into the HeLa cells via magnetofection. UV-Visible Spectrophotometry analysis showed a peak at 200 nm, which confirms the presence of FeO nanoparticles. The Scanning Electron Microscopy images revealed the formation of spherical-shaped nanoparticles with an average size of 10 nm. X-ray Diffraction also confirmed FeO as a significant constituent element. Vibrating Sample Magnetometry ensures that the nanoparticles are superparamagnetic. Atomic Force Microscopy images show the DNA bound on the surface of the nanoparticles. The gene delivery and transfection efficiency were analyzed by flow cytometry. These nanoparticles could effectively compact the pDNA, allowing efficient gene transfer into the HeLa cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484435PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289731PLOS

Publication Analysis

Top Keywords

gene delivery
20
nanoparticles
9
effective gene
8
cell lines
8
magnetic nanoparticles
8
iron oxide
8
oxide nanoparticles
8
dna bound
8
microscopy images
8
delivery
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!