Thalassemia and malignancies: Updates from the literature.

Ann N Y Acad Sci

Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.

Published: November 2023

Thalassemia management has undergone significant development with the advancement in iron chelation therapy, which has led to a prolonged life expectancy. This has been accompanied by the emergence of several new morbidities and chronic diseases, including cancer. Over the years, multiple cases of solid and hematologic malignancies in thalassemia patients have been reported in the literature, with no clear mechanism for the development of cancer in these patients despite a number of potential mechanisms. However, the results of many studies have been contradictory regarding the risk of development of malignancies in thalassemia. The present review aims to discuss the available data on cancer and thalassemia in the literature, with the latest updates regarding possible malignancy development mechanisms, risks, and the most commonly reported types.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.15061DOI Listing

Publication Analysis

Top Keywords

malignancies thalassemia
8
thalassemia
5
thalassemia malignancies
4
malignancies updates
4
updates literature
4
literature thalassemia
4
thalassemia management
4
management undergone
4
development
4
undergone development
4

Similar Publications

Osteopetrosis is a group of genetically and clinically diverse inherited disorders characterized by an increase in bone density. The main known cause is an abnormality in the development or function of osteoclasts. Hence, the process of bone resorption is impaired, resulting in: 1- a reduction in bone marrow volume and, subsequently, a decrement in the hematopoietic capacity of bone marrow, which leads to anemia and compromised immunological function; 2- improper bone development, which leads to pressure on peripheral nerves, causing auditory, visual, and movement impairments; and 3- disturbance in the formation of bone microstructure that leads to susceptibility to bone fracture.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells.

Sci Rep

January 2025

NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.

View Article and Find Full Text PDF

Objective: The purpose of this study was to describe clinical complications and healthcare resource utilization (HCRU) among patients with sickle cell disease (SCD) with recurrent vaso-occlusive crises (VOCs) and patients with transfusion-dependent β-thalassemia (TDT) in Germany.

Methods: The Betriebskrankenkasse (BKKs) Database was used to identify patients with SCD or TDT. To be eligible for inclusion, patients with SCD were required to have ≥ 2 VOCs/year in any two consecutive years and ≥ 12 months of available data before and after the index date (second VOC in the second consecutive year).

View Article and Find Full Text PDF

RAD51 and RAD50 genetic polymorphisms from homologous recombination repair pathway are associated with disease outcomes and organ toxicities in AML.

Blood Res

December 2024

Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Meshkin Fam Street, P.O. Box, Shiraz, 71345-1744, Iran.

Background: Acute myeloid leukemia (AML) is a heterogeneous malignancy that responds to various therapies. The sensitivity of leukemia cells to chemotherapy is affected by the DNA damage response (DDR). In this study, we examined the association between RAD51 rs1801320, XRCC3 rs861539, NBS1 rs1805794, MRE11 rs569143, and RAD50 rs2299014 variants of the homologous recombination repair (HRR) pathway and AML outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!