This article reports on 30% scandium-doped AlN (ScAlN) lateral field-excited (LFE) cross-sectional Lame' mode resonators (CLMRs) with unprecedented performance in the 6-20 GHz range. By combining high-crystallinity 30% ScAlN piezoelectric thin films, a lithographic tunability of the resonance frequency, and a simple three-mask post-CMOS compatible fabrication process, we propose a technology platform that can enable the mass production of low-loss, wideband, and compact microacoustic filtering devices spanning a wide spectrum portion on the same chip for the next-generation radio frequency front ends (RFFEs) of handsets. This article demonstrates a successful scaling of the microacoustic technology well beyond the sub-6-GHz fifth-generation (5G) band, as well as the outstanding capabilities of high-crystallinity 30% ScAlN piezoelectric layers in delivering high-quality factor ( Q ) and high-electromechanical coupling ( k ) resonators, notably exceeding the state of the art in terms of relevant figures of merit (FOMs). Furthermore, we experimentally investigate the impact of geometrical parameters, such as tethering configuration and width-over-length ratio on the devices' 3-dB quality factor ( [Formula: see text]), power linearity (PL), and temperature coefficient of frequency (TCF). By adopting a statistical approach for data analysis, we determine the optimal geometry to maximize the Q value. Moreover, we experimentally demonstrate that a fully tethered device's configuration ensures superior PL, lower TCF, and higher device yield and select that as the best design tradeoff between all the variables under consideration. Finally, we discuss a further scaling of LFE CLMRs, both in terms of higher doping levels in the piezoelectric layer, in order to enhance the performance of microacoustic filters, and in terms of higher operation frequencies, in order to reach and cover the mm-wave spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2023.3312913DOI Listing

Publication Analysis

Top Keywords

30% scaln
12
6-20 ghz
8
scaln lateral
8
lateral field-excited
8
mode resonators
8
front ends
8
high-crystallinity 30%
8
scaln piezoelectric
8
terms higher
8
30%
4

Similar Publications

Composition-Graded Nitride Ferroelectrics Based Multi-Level Non-Volatile Memory for Neuromorphic Computing.

Adv Mater

December 2024

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

Multi-level non-volatile ferroelectric memories are emerging as promising candidates for data storage and neuromorphic computing applications, due to the enhancement of storage density and the reduction of energy and space consumption. Traditional multi-level operations are achieved by utilizing intermediary polarization states, which exhibit an unpredictable ferroelectric domain switching nature, leading to unstable multi-level memory. In this study, a unique approach of composition-graded ferroelectric ScAlN to achieve tunable operating voltage in a wide range and attain precise control of domain switching and stable multi-level memory is proposed.

View Article and Find Full Text PDF

This study presents a comprehensive dispersion analysis and characterization of guided surface acoustic waves (SAWs) in 30% scandium aluminum nitride (ScAlN) alloy thin films on sapphire (SoS). The solidly mounted platform, which supports the fundamental Rayleigh and Sezawa SAW modes, offers mechanical robustness and high electromechanical coupling (k), while maintaining high confinement of the acoustic modes. Numerical modeling, coupled with experimental results, showcases the characteristics of focusing interdigitated transducers (FIDTs) for injecting acoustic energy into piezoelectric etch-defined acoustic waveguides and highlights their advantages over conventional uniform aperture transducers.

View Article and Find Full Text PDF

Although Sc doped AlN (ScAlN) has been used extensively in micro-electro-mechanical systems (MEMS) devices and more recently in optical devices, there have not been thorough studies of its intrinsic optical losses. Here we explore the optical losses of the ScAlN waveguide system by observing racetrack resonator waveguide quality factors. Using a partial physical etch, we fabricate waveguides and extract propagation losses as low as 1.

View Article and Find Full Text PDF

This article reports on 30% scandium-doped AlN (ScAlN) lateral field-excited (LFE) cross-sectional Lame' mode resonators (CLMRs) with unprecedented performance in the 6-20 GHz range. By combining high-crystallinity 30% ScAlN piezoelectric thin films, a lithographic tunability of the resonance frequency, and a simple three-mask post-CMOS compatible fabrication process, we propose a technology platform that can enable the mass production of low-loss, wideband, and compact microacoustic filtering devices spanning a wide spectrum portion on the same chip for the next-generation radio frequency front ends (RFFEs) of handsets. This article demonstrates a successful scaling of the microacoustic technology well beyond the sub-6-GHz fifth-generation (5G) band, as well as the outstanding capabilities of high-crystallinity 30% ScAlN piezoelectric layers in delivering high-quality factor ( Q ) and high-electromechanical coupling ( k ) resonators, notably exceeding the state of the art in terms of relevant figures of merit (FOMs).

View Article and Find Full Text PDF

SAW Resonators and Filters Based on ScAlN on Single Crystal and Polycrystalline Diamond.

Micromachines (Basel)

June 2022

Departamento Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Ciudad Universitaria, Calle del Profesor Aranguren 3, 28040 Madrid, Spain.

Article Synopsis
  • The demand for high data transfer rates in mobile communication requires devices with strong performance and stability across various conditions.
  • Surface acoustic wave (SAW) devices, known for their high Q-factor and stability, were developed using Sc0.43Al0.57N materials on diamond substrates.
  • These SAW resonators and filters demonstrated impressive performance, with frequencies exceeding 4.7 GHz, indicating their potential for advancing 5G technology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!