Collaborative impact of bacterial exometabolites governing root microbiota formation.

Stress Biol

State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

Published: September 2023

AI Article Synopsis

  • The establishment of root microbiota largely comes from soil microorganisms, but there's limited understanding of how these microbes interact with each other.
  • Research involving 39,204 interbacterial interactions revealed that the exometabolites 2,4-diacetylphloroglucinol (DAPG) and pyoverdine play crucial roles in the antimicrobial activities of Pseudomonas brassicacearum R401.
  • These exometabolites not only help establish root competence but are also commonly found in the roots of plants like Arabidopsis thaliana, indicating their importance in maintaining a healthy root microbiota.

Article Abstract

The majority of the root microbiota formation derives from soil-dwelling microorganisms. The limited extent of thorough investigation leads to a dearth of knowledge concerning the intricate mechanisms of microbe-microbe interaction implicated in the establishment of root microbiota. Therefore, the taxonomic signatures in bacterial inhibition profiles were determined by in vitro testing of 39,204 binary interbacterial interactions. However, findings from genetic and metabolomic studies elucidated that co-functioning of the antimicrobial 2,4-d iacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites has significantly contributed to the potent inhibitory activities of the highly antagonistic Pseudomonas brassicacearum R401. Microbiota restoration with a core of Arabidopsis thaliana root commensals showed that these exometabolites possess a root niche-specific function in establishing root competence and inducing anticipated changes in root surroundings. Both biosynthetic operons are abundant in roots in natural habitats, indicating that these exometabolites co-functioning is an adaptive feature that helps Pseudomonad dominate the root microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484853PMC
http://dx.doi.org/10.1007/s44154-023-00121-1DOI Listing

Publication Analysis

Top Keywords

root microbiota
16
root
8
microbiota formation
8
microbiota
5
collaborative impact
4
impact bacterial
4
exometabolites
4
bacterial exometabolites
4
exometabolites governing
4
governing root
4

Similar Publications

To limit damage from insect herbivores, plants rely on a blend of defensive mechanisms that includes partnerships with beneficial microbes, particularly those inhabiting roots. While ample evidence exists for microbially mediated resistance responses that directly target insects through changing phytotoxin and volatile profiles, we know surprisingly little about the microbial underpinnings of plant tolerance. Tolerance defenses counteract insect damage via shifts in plant physiology that reallocate resources to fuel compensatory growth, improve photosynthetic efficiency, and reduce oxidative stress.

View Article and Find Full Text PDF

Royle ex Wight, commonly known as "Baishouwu," has been traditionally used in China for its medicinal and dietary benefits. Despite its long history of use, the potential therapeutic effects of in the treatment of colitis have not been fully investigated. This study aims to evaluate the effects of the water extract of root on colitis and elucidate its potential mechanisms of action.

View Article and Find Full Text PDF

Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.

View Article and Find Full Text PDF

Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil.

View Article and Find Full Text PDF

Unraveling the shifts in the belowground microbiota and metabolome of Pinus pinaster trees affected by forest decline.

Sci Total Environ

January 2025

Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain. Electronic address:

Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!