Populus is an important tree genus frequently cultivated for economical purposes. However, the high sensitivity of poplars towards water deficit, drought, and salt accumulation significantly affects plant productivity and limits biomass yield. Various cultivation and abiotic stress conditions have been described to significantly induce the formation of apoplastic barriers (Casparian bands and suberin lamellae) in roots of different monocotyledonous crop species. Thus, this study aimed to investigate to which degree the roots of the dicotyledonous gray poplar (Populus × canescens) react to a set of selected cultivation conditions (hydroponics, aeroponics, or soil) and abiotic stress treatments (abscisic acid, oxygen deficiency) because a differing stress response could potentially help in explaining the observed higher stress susceptibility. The apoplastic barriers of poplar roots cultivated in different environments were analyzed by means of histochemistry and gas chromatography and compared to the available literature on monocotyledonous crop species. Overall, dicotyledonous poplar roots showed only a remarkably low induction or enhancement of apoplastic barriers in response to the different cultivation conditions and abiotic stress treatments. The genetic optimization (e.g., overexpression of biosynthesis key genes) of the apoplastic barrier development in poplar roots might result in more stress-tolerant cultivars in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441858 | PMC |
http://dx.doi.org/10.1007/s44154-023-00103-3 | DOI Listing |
Plant Commun
December 2024
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Transition metals are a type of metal with high chemical activity and play critical roles in plant growth and development, reproduction and environmental adaptation, as well as for human health. However, the acquisition, transportation and storage of these metals always pose specific challenges due to their nature of high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout the plants.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China.
Manganese (Mn), a plant micronutrient element, is an important component of metalloprotein involved in multiple metabolic processes, such as photosynthesis and scavenging reactive oxygen species (ROS). Its disorder (deficiency or excess) affects the Mn-dependent metabolic processes and subsequent growth and development of plants. The beneficial element of Si has a variety of applications in agricultural fields for plant adaptation to various environmental stresses, including Mn disorder.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
From soil to plant, the water and ions, enter the root system through the symplast and apoplast pathways. The latter gains significance under salt stress and becomes a major port of entry of the dissolved salts particularly the sodium ions into the root vasculature. The casparian strip (CS), a lignified barrier circumambulating the root endodermal cells' radial and transverse walls regulates the movement of water and solutes in and out of the stele.
View Article and Find Full Text PDFPlants (Basel)
November 2024
College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
The apoplastic barriers, composed of Casparian strip (CS) and suberin lamellae (SL), are integral to the regulation of water and plant nutrient uptake in plants, as well as their resilience to abiotic stresses. This study systematically examines the research developments and emerging trends in this field from 2003 to 2023, utilizing bibliometric tools such as Web of Science, CiteSpace, and VOSviewer to analyze a dataset of 642 publications. This paper reviews the cooperation of different countries, institutions, and scholars in apoplastic barriers research based on cooperative network analysis.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
Lack of O and high concentrations of iron (Fe) are common in flooded soils where Rice (Oryza sativa L.) is cultivated. We tested the hypothesis that growing in stagnant or high Fe conditions might induce the formation of apoplastic barriers in roots with different properties and chemical compositions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!