We apply the Alchemical Transfer Method (ATM) and a bespoke fixed partial charge force field to the SAMPL9 bCD host-guest binding free energy prediction challenge that comprises a combination of complexes formed between five phenothiazine guests and two cyclodextrin hosts. Multiple chemical forms, competing binding poses, and computational modeling challenges pose significant obstacles to obtaining reliable computational predictions for these systems. The phenothiazine guests exist in solution as racemic mixtures of enantiomers related by nitrogen inversions that bind the hosts in various binding poses, each requiring an individual free energy analysis. Due to the large size of the guests and the conformational reorganization of the hosts, which prevent a direct absolute binding free energy route, binding free energies are obtained by a series of absolute and relative binding alchemical steps for each chemical species in each binding pose. Metadynamics-accelerated conformational sampling was found to be necessary to address the poor convergence of some numerical estimates affected by conformational trapping. Despite these challenges, our blinded predictions quantitatively reproduced the experimental affinities for the β-cyclodextrin host and, to a lesser extent, those with a methylated derivative. The work illustrates the challenges of obtaining reliable free energy data in drug design for even seemingly simple systems and introduces some of the technologies available to tackle them.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp02125dDOI Listing

Publication Analysis

Top Keywords

free energy
20
binding free
16
binding poses
12
binding
9
energy prediction
8
phenothiazine guests
8
obtaining reliable
8
free
6
energy
5
taming multiple
4

Similar Publications

Flaky sputtered silicon MWCNTs core-shell structure as a freestanding binder-free electrode for lithium-ion battery.

Sci Rep

January 2025

Nano-fabricated Energy Devices Lab, School of Electrical and Computer Eng., University of Tehran, 14395-515, Tehran, Iran.

Core-shell silicon/multiwall carbon nanotubes are one of the most promising anode candidates for further improvement of lithium-ion batteries. Sufficient accommodation for massive volume expansion of silicon during the lithiation process and preventing pulverization and delamination with easy fabrication processes are still critical issues for practical applications. In this study, core-shell silicon/MWCNTs anode materials were synthesized using a facile and controllable PECVD technique to realize aligned MWCNTs followed by a silicon sputtering step.

View Article and Find Full Text PDF

Discovery of ketene/acetyl as a potential receptor for hydrogen-transfer reactions in zeolites.

Nat Commun

January 2025

School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China.

Hydrogen-transfer is the primary process responsible for elevating the degree of unsaturation of intermediates in zeolite-catalyzed methanol-to-hydrocarbon reactions, with olefins serving as the typical receptor and alkanes being produced as the by-product. Intriguingly, the introduction of CO was shown to suppress the selectivity of alkanes and enhance the production of aromatics, yet microscopic understanding of this phenomenon remains elusive. Here, based on ab initio molecular dynamics simulations and free energy sampling methods, we discover a non-olefin-induced hydrogen-transfer reaction in the presence of CO, with ketene/acetyl emerging as a more suitable hydrogen-transfer receptor than olefins.

View Article and Find Full Text PDF

Aptamer-Antibody Birecognized Sandwich SERRS Biosensor in Accurate and Rapid Identification of Intraoperative Parathyroid Hormone.

Anal Chem

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, Cancer Center and Department of Breast and Thyroid Surgery, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Laboratory Animal Center Xiamen University, Xiamen University, Xiamen 361005, China.

With the increasing incidence of thyroid cancer worldwide and the increasing demand for surgery, the risk of parathyroid injury is also increasing, which will lead to postoperative hypoparathyroidism (HP) and hypocalcemia. In order to improve the quality of life of patients after surgery, there is an urgent need to develop a novel platform that can identify the parathyroid gland immediately during surgery. The parathyroid gland promotes the increase of blood calcium concentration by secreting parathyroid hormone (PTH).

View Article and Find Full Text PDF

Experimental and DFT Studies of Intermolecular Interaction-Assisted Oxindole Cyclization Reaction of Di-t-butyl 2-Aminophenyl-2-methyl Malonate.

Chem Pharm Bull (Tokyo)

January 2025

Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!