Considering the augmentation of new generation energy harvesting devices and applications of electron-hole separation therein, conversion of 3D cubic CsPbBr perovskite nanocrystals into 2D-platelets through ligand-ligand hydrophobic interactions has been conceived here. Cationic surfactants with various chain length coated the gold nanoclusters (AuNCs) that interact with oleic acid (OA) and oleylamine (OAm) coated 3D CsPbBr nanocrystals to disintegrate the crystallinity of the perovskites and reformation of AuNC-grafted 2D-platelets of unusually large size. The planar perovskite-derivatives act as an exciton donor to the embedded AuNCs through photoinduced electron transfer (PET). This process is controlled by the optimum surfactant chain length. Transient absorption spectroscopy shows that the fastest radical growth time (4 ps) was with the 14-carbon containing tail of the surfactant, followed by the 16-carbon (45 ps) and the 12-carbon (290 ps) ones. PET is administered by the energy gaps of the participating candidates that control the transition dynamics. Our findings can be a potential tool to develop metal nanocluster-based hybrid 2D perovskite-derived platelets for optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c01886DOI Listing

Publication Analysis

Top Keywords

perovskite nanocrystals
8
photoinduced electron
8
electron transfer
8
chain length
8
hydrophobic chain-induced
4
chain-induced conversion
4
conversion three-dimensional
4
three-dimensional perovskite
4
nanocrystals gold
4
gold nanocluster-grafted
4

Similar Publications

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.

View Article and Find Full Text PDF

Enabling Multicolor Information Encryption: Oleylammonium-Halide-Assisted Reversible Phase Conversion between CsPbX and CsPbX Nanocrystals.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China.

Recently, halide perovskites have been recognized for their thermochromic characteristics, showing significant potential in information encryption applications. However, the limited luminescence color gamut hinders the encryption of complex multicolor information. Herein, for the first time, multicolor thermochromic perovskites with luminescence covering the entire visible spectrum have been designed.

View Article and Find Full Text PDF

Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals.

J Phys Chem Lett

December 2024

Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered CsBiX (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy.

View Article and Find Full Text PDF

A ratiometric fluorescent probe based on water-soluble CsPbX (Br/I) perovskite nanocrystals for sensitive detection of tetracycline.

Mikrochim Acta

December 2024

Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Colleges Universities Key Laboratory of Optic-Electric Chemo/Biosensing and Molecular Recognition, Guangxi Minzu University, Nanning, 530006, China.

A dual supersaturation recrystallization method was employed to synthesize water-stable, highly sensitive cesium-lead halide perovskite nanocrystals (CsPbBr PNCs). The PNCs exhibited excellent water stability, a significant photoluminescence quantum efficiency of 83.03%, along with a narrow full width at half maximum (FWHM) of 20 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!