A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CT-based radiomics model to predict spread through air space in resectable lung cancer. | LitMetric

CT-based radiomics model to predict spread through air space in resectable lung cancer.

Cancer Med

Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

Published: September 2023

Background: Spread through air space (STAS) has been identified as a pathological pattern associated with lung cancer progression. Patients with STAS were related to a worse prognosis compared with patients without STAS. The objective of this study was to establish a radiomics model capable of forecasting STAS before surgery, which can assist surgeons in selecting the most appropriate operation type for patients with STAS.

Method: There were 537 eligible patients retrospectively included in this study. ROI segmentation was performed manually on all CT images to identify the region of interest. From each segmented lesion, a total of 1688 features were extracted. The tumor size, maximum tumor diameters, and tumor type were also recorded. Using Spearman's correlation coefficient to calculate the correlation and redundancy of elements, and redundant features less than 0.80 were removed. In order to reduce the level of overfitting and avoid statistical biases, a dimension reduction process of the dataset was conducted to decrease the number of features. Finally, a radiomics model included 44 features was established to predict STAS. To evaluate the performance of the model, the receiver operating characteristic (ROC) curve was used, and the area under the curve (AUC) was calculated, and the accuracy of the model was verified by 10-fold cross-validation.

Results: The incidence of STAS was 38.2% (205/537). The tumor type, maximum tumor diameters, and consolidation tumor ratio were significantly different between STAS group and non-STAS group. The training group included 430 patients, while the test group was consisted with 107. The training group achieved an AUC of 0.825 (sensitivity, 0.875; specificity, 0.621; and accuracy, 0.749) and the test group had an AUC of 0.802 (sensitivity, 0.797; specificity,0.688; and accuracy, 0.748). The 10-fold cross-validation had an AUC of 0.834.

Conclusion: CT-based radiomic model can predict STAS effectively, which is of great importance to guide the selection of operation types before surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557899PMC
http://dx.doi.org/10.1002/cam4.6496DOI Listing

Publication Analysis

Top Keywords

radiomics model
12
model predict
8
spread air
8
air space
8
lung cancer
8
stas
8
patients stas
8
maximum tumor
8
tumor diameters
8
tumor type
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!