Exploring highly efficient single atom catalysts with defined active centers and tunable electronic structures is highly desirable. Herein, we developed an efficient hydrogen evolution reaction (HER) electrocatalyst through a self-gating phenomenon induced by Pt single atoms (SAs) supported on ultrathin NiO nanosheets (Pt-NiO). The Ni atoms in NiO are partially replaced by the atomically dispersed Pt atoms, leading to a transition from p-type NiO into n-type Pt-NiO. When the n-type Pt-NiO serves as HER electrocatalyst, the self-gating phenomenon occurs in the ultrathin nanosheets, resulting in a mixture of leakage ("active") and metal-insulator-semiconductor ("inert") regions. The "inert" region induced by the ionic gating and reverse potential is capable of accumulating relatively high surface charge carrier concentration with an ultrahigh electric field, making the Pt-NiO highly conductive; meanwhile, the HER process occurs at the Pt SAs sites (active region) in the Pt-NiO nanosheets. As a result, the Pt-NiO requires only 55 mV to deliver 10 mA/cm in an alkaline solution with good stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c06595 | DOI Listing |
Nanoscale
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
Due to their ease of synthesis and large specific surface area, Ni(OH) nanosheets have emerged as promising electrochemical sensing materials, attracting significant attention in recent years. Herein, a series of oxy-hydroxides based on Ni(OH) nanosheets, including NiO/Ni(OH)@NF and (MNi)O/Ni(OH)@NF (M = Co, Fe, or Cr), are successfully synthesized the electrochemical oxidation and incorporation strategies. Electrochemical tests demonstrate that these Ni(OH)-based oxy-hydroxides exhibit excellent electrochemical oxidation activity for glucose in alkaline electrolyte.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 PR China. Electronic address:
The development of efficient photocatalysts inspired by natural photosynthesis has drawn considerable interest for sustainable hydrogen (H) production. Among the various strategies for enhancing H evolution, constructing step-scheme (S-scheme) heterojunctions has attracted extensive interest, thanks to their limited charge recombination and enhanced charge transport in comparison to the traditional photocatalytic systems. Herein, we report the engineering of a novel S-scheme heterojunction by integrating ultrathin ZnInS (ZIS) nanosheets with MOF-derived N-doped NiO porous microrods (ZIS/N-NiO) toward superior photocatalytic behaviors.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China. Electronic address:
Bacterial infection has always been a serious public health problem worldwide. Real-time microbial monitoring in the trauma resuscitation unit is crucial for infection control and plays an essential role in all aspects of wound treatment clinical practice, such as identification and evaluation of wound infection, diagnosis of wound infection, and topical antimicrobial treatment. Herein, gold-loaded nickel oxide nanosheets (Au-NiO NSs) prepared by hydrothermal and laser-assisted synthesis methods are used as fluorescent nanoprobes to rapidly detect and target bacteria at an early stage, and then achieve combined PTT and PDT to inactivate bacteria under sunlight.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Institute of Chemistry, Chemical Technology I, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany.
Earth-abundant transition metal oxides are promising alternatives to precious metal oxides as electrocatalysts for the oxygen evolution reaction (OER) and are intensively investigated for alkaline water electrolysis. OER electrocatalysis, like most other catalytic reactions, is surface-initiated, and the catalyst performance is fundamentally determined by the surface properties. Most transition metal oxide catalysts show OER activities that depend on the predominantly exposed crystal facets/surface structure.
View Article and Find Full Text PDFLangmuir
October 2024
Materials Electrochemistry Laboratory Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203, India.
Evolving highly competent and economical electrocatalysts for alkaline water electrolysis is crucial in renewable hydrogen energy technologies. The slow hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) kinetics under alkaline electrolytes, still, has troubled developments in high-performance green hydrogen production systems. Herein, we demonstrate the tailoring of the interface of earth-abundant transition-metal nanoclusters (MNCs), including iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu) nanoclusters on nickel oxide nanosheets (M NCs|NiO NS) through metal-support interaction for enriched overall water splitting under an alkaline electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!