Tick-to-host transmission differs between strains.

Microbiol Spectr

Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.

Published: September 2023

Many vector-borne pathogens establish multiple-strain infections in the vertebrate host and the arthropod vector. Multiple-strain infections in the host influence strain acquisition by naive vectors. Whether multiple-strain infections in the vector influence strain-specific transmission to naive hosts remains unknown. The spirochete, , causes Lyme borreliosis and multiple-strain infections are common in both the tick vector and vertebrate host. Our study used two strains: Fin-Jyv-A3 and NE4049. Donor mice were infected with Fin-Jyv-A3 alone, NE4049 alone, or with both strains. Larval ticks fed on donor mice and molted into nymphal ticks infected with either strain or both strains. These nymphs were fed on test mice to determine whether multiple-strain infections in the nymph influence nymph-to-host transmission (NHT). Multiple-strain infection in the donor mice reduced the acquisition of both strains by ticks by 23%. Thus, a substantial fraction of infected nymphs from the multiple strain treatment were infected with the "wrong" competitor strain rather than the "right" focal strain. As a result, nymphs from the multiple strain treatment were 46% less likely to infect the test mice with the focal strain compared to nymphs from the single strain treatment. However, multiple-strain infection in the nymphal tick had no effect on the NHT of either strain. The nymphal spirochete load of Fin-Jyv-A3 was 1.9 times higher compared to NE4049. NHT of Fin-Jyv-A3 (79%) was 1.5 times higher compared to NE4049 (53%). Our study suggests that strains with higher nymphal spirochete loads have higher NHT. IMPORTANCE For many vector-borne pathogens, multiple-strain infections in the vertebrate host or arthropod vector are common. Multiple-strain infections in the host reduce strain acquisition by feeding vectors. Whether multiple-strain infections in the vector influence strain transmission to the host remains unknown. In our study, we used two strains of the tick-borne spirochete , which causes Lyme borreliosis, to investigate whether multiple-strain infections in the nymphal tick influenced nymph-to-host transmission (NHT) of strains. Multiple-strain infections in mice reduced the acquisition of both strains by nymphal ticks. As a result, nymphs from the multiple strain treatment were less likely to infect naive test mice with the focal strain. Multiple-strain infection in the nymphal ticks did not influence the NHT of either strain. The strain with the higher bacterial abundance in the nymph had higher NHT. Our study suggests that pathogen abundance in the arthropod vector is important for vector-to-host transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580945PMC
http://dx.doi.org/10.1128/spectrum.01675-23DOI Listing

Publication Analysis

Top Keywords

multiple-strain infections
40
strain treatment
16
strain
15
multiple-strain
13
vertebrate host
12
arthropod vector
12
donor mice
12
nymphal ticks
12
test mice
12
multiple-strain infection
12

Similar Publications

The electrophile methylglyoxal (MG) is produced by microorganisms and host cells through central metabolic pathways. MG is a highly reactive electrophile, so it must be rapidly detoxified to prevent damaging modifications to macromolecules. , a pathogen of concern due to its ability develop multidrug resistance, causes many types of infections that have been associated with elevated MG levels, including cystic fibrosis (CF).

View Article and Find Full Text PDF

Ocular syphilis is a serious complication of infection that can occur at any stage of syphilis and affect any eye structure. It remains unknown if certain strains are associated with ocular infections; therefore, we performed genotyping and whole genome sequencing (WGS) to characterize strains from patients with ocular syphilis. Seventy-five ocular or non-ocular specimens from 55 ocular syphilis patients in 14 states within the United States were collected between February 2016 and November 2020.

View Article and Find Full Text PDF

Background: Research on the advantages of probiotics has attracted increasing interest based on the number of publications, products, and public awareness of their benefits. This review evaluated the role of probiotics (single and multiple regimens) as an additional regimen to treat common infectious diseases, including Helicobacter. pylori, diarrheal infections, urinary tract infections (UTIs), upper respiratory tract infections (URTIs), and HIV infections.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic surveillance of Plasmodium falciparum can help National Malaria Control Programmes estimate parasite transmission using metrics like multi-strain infections and infection complexity, despite uncertainties about their ability to directly predict clinical incidence.
  • In a study involving 3,147 clinical infections across Senegal from 2012-2020, researchers used genetic analysis to correlate genetic metrics with malaria incidence at different clinic sites.
  • Results indicated that genetic metrics reliably predicted incidence when transmission was high (over 10 cases per 1,000 annually), but showed reversed correlations at lower transmission levels, suggesting a limit to the use of genetics in estimating incidence during low transmission periods.
View Article and Find Full Text PDF

is a nosocomial pathogen often associated with multidrug resistance (MDR) infections. Fluoroquinolone resistance (FQR) due to drug target site mutations and elevated expression of RND drug transporters is common among clinical isolates. We describe here a CRISPRi platform that identifies hypomorphic mutations that preferentially altered drug sensitivity in RND pump overproducers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!