AI Article Synopsis

  • * Aged female mice show greater cognitive deficits and increased signs of cellular aging (senescence) when exposed to iron (ferric citrate) compared to aged male mice.
  • * The study identifies the downregulation of the Robo4 receptor in the brain vasculature of aged female mice as a key factor that makes them more vulnerable to iron-induced cellular aging, suggesting it may be a risk factor for brain dysfunction.

Article Abstract

Iron imbalance in the brain negatively affects brain function. With aging, iron levels increase in the brain and contribute to brain damage and neurological disorders. Changes in the cerebral vasculature with aging may enhance iron entry into the brain parenchyma, leading to iron overload and its deleterious consequences. Endothelial senescence has emerged as an important contributor to age-related changes in the cerebral vasculature. Evidence indicates that iron overload may induce senescence in cultured cell lines. Importantly, cells derived from female human and mice generally show enhanced senescence-associated phenotype, compared with males. Thus, we hypothesize that cerebral endothelial cells (CEC) derived from aged female mice are more susceptible to iron-induced senescence, compared with CEC from aged males. We found that aged female mice, but not males, showed cognitive deficits when chronically treated with ferric citrate (FC), and their brains and the brain vasculature showed senescence-associated phenotype. We also found that primary culture of CEC derived from aged female mice, but not male-derived CEC, exhibited senescence-associated phenotype when treated with FC. We identified that the transmembrane receptor Robo4 was downregulated in the brain vasculature and in cultured primary CEC derived from aged female mice, compared with those from male mice. We discovered that Robo4 downregulation contributed to enhanced vulnerability to FC-induced senescence. Thus, our study identifies Robo4 downregulation as a driver of senescence induced by iron overload in primary culture of CEC and a potential risk factor of brain vasculature impairment and brain dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652299PMC
http://dx.doi.org/10.1111/acel.13977DOI Listing

Publication Analysis

Top Keywords

iron overload
16
aged female
16
female mice
16
primary culture
12
senescence-associated phenotype
12
cec derived
12
derived aged
12
brain vasculature
12
brain
9
cerebral endothelial
8

Similar Publications

Absence of gut microbiota alleviates iron overload-induced colitis by modulating ferroptosis in mice.

J Adv Res

December 2024

Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Introduction: Iron overload disrupts gut microbiota and induces ferroptosis, contributing to colitis. However, whether gut microbiota directly drives iron overload-induced colitis and its underlying mechanism remain unclear.

Objectives: The study aimed to explore whether gut microbiota can directly regulate iron overload-induced colitis and its underling mechanism.

View Article and Find Full Text PDF

Background: Hemophilic arthropathy (HA) is a joint disease characterized by local iron overload, stemming from erythrocyte rupture and closely linked to synovial lesions. However, the precise molecular characteristics of clinical HA synovial samples remain to be defined.

Objectives: To gain insight into HA synovial tissue lesions, we utilized a metalloprotein strategy to compare the metal and protein spectra of HA with those of osteoarthritis (OA) and rheumatoid arthritis (RA).

View Article and Find Full Text PDF

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI.

View Article and Find Full Text PDF

Rhabdomyolysis (RM)-induced acute kidney injury (AKI) involves the release of large amounts of iron ions from excess myoglobin in the kidneys, which mediates the overproduction of reactive species with the onset of iron overload via the Fenton reaction, thus inducing ferroptosis and leading to renal dysfunction. Unfortunately, there are no effective treatments for AKI other than supportive care. Herein, we developed a multifunctional nanoplatform (MPD) by covalently bonding melanin nanoparticles (MP NPs) to deferoxamine.

View Article and Find Full Text PDF

Noninvasive Quantitative CT for Diffuse Liver Diseases: Steatosis, Iron Overload, and Fibrosis.

Radiographics

January 2025

From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/311 Clinical Science Center, Madison, WI 53792-3252; and the American College of Radiology (ACR) Institute for Radiologic Pathology, Silver Spring, Md.

Chronic diffuse liver disease continues to increase in prevalence and represents a global health concern. Noninvasive detection and quantification of hepatic steatosis, iron overload, and fibrosis are critical, especially given the many relative disadvantages and potential risks of invasive liver biopsy. Although MRI techniques have emerged as the preferred reference standard for quantification of liver fat, iron, and fibrosis, CT can play an important role in opportunistic detection of unsuspected disease and is performed at much higher volumes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!