Bacteria are well known to provide heterologous immunity against viral infections through various mechanisms including the induction of innate trained immunity and adaptive cross-reactive immunity. Cross-reactive immunity from bacteria to viruses is responsible for long-term protection and yet its role has been downplayed due the difficulty of determining antigen-specific responses. Here, we carried out a systematic evaluation of the potential cross-reactive immunity from selected bacteria known to induce heterologous immunity against various viruses causing recurrent respiratory infections. The bacteria selected in this work were Bacillus Calmette Guerin and those included in the poly-bacterial preparation MV130: , , , , and . The virus included influenza A and B viruses, human rhinovirus A, B and C, respiratory syncytial virus A and B and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through BLAST searches, we first identified the shared peptidome space (identity ≥ 80%, in at least 8 residues) between bacteria and viruses, and subsequently predicted T and B cell epitopes within shared peptides. Interestingly, the potential epitope spaces shared between bacteria in MV130 and viruses are non-overlapping. Hence, combining diverse bacteria can enhance cross-reactive immunity. We next analyzed in detail the cross-reactive T and B cell epitopes between MV130 and influenza A virus. We found that MV130 contains numerous cross-reactive T cell epitopes with high population protection coverage and potentially neutralizing B cell epitopes recognizing hemagglutinin and matrix protein 2. These results contribute to explain the immune enhancing properties of MV130 observed in the clinic against respiratory viral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477994PMC
http://dx.doi.org/10.3389/fimmu.2023.1235053DOI Listing

Publication Analysis

Top Keywords

cross-reactive immunity
20
cell epitopes
16
immunity
8
influenza virus
8
heterologous immunity
8
viral infections
8
bacteria viruses
8
cross-reactive cell
8
cross-reactive
7
bacteria
7

Similar Publications

Introduction: The low incidence of intradialytic hypotension (IDH) in high-volume (HV) hemodiafiltration (HDF) may help in maintaining gut perfusion during treatment. Preservation of gut endothelial integrity would limit or prevent bacterial translocation and subsequent systemic inflammation, which may contribute to the low mortality rate in HV-HDF.

Methods: Forty patients were cross-over randomized to standard (hemodialysis [HD]) (S-HD), cool HD (C-HD), and HDF (low-volume [LV] and HV, convection volume (CV) of 15 L and ≥ 23 L per session, respectively), each for 2 weeks.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Primary and secondary antibody deficiencies (PAD and SAD) are amongst the most prevalent immunodeficiency syndromes, often necessitating long-term immune globulin replacement therapy (IRT). Both intravenous immunoglobulin (IVIG) and subcutaneous immunoglobulin (SCIG) have demonstrated efficacy in antibody deficiency. Comparative analyses of these two routes of administration are limited to nurse-administered IVIG and home therapy with self-administered SCIG.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have emerged as the first-line treatment for driver-negative advanced non-small cell lung cancer (NSCLC). However, there is uncertainty regarding the availability and timing of ICI initiation in patients with NSCLC combined with pulmonary tuberculosis (TB). Additionally, the implementation of dual therapy for anti-TB and anti-tumor treatment poses significant challenges in terms of avoiding drug-drug interactions and reducing adverse reactions during clinical diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!