The dataset of Leaf Color Chart (PaddyNet) is publicly unavailable. As far as the author's knowledge, this is the first dataset about paddy leaves based on LCC. This dataset has been generated by collecting images from a particular location such as Sajiali, Dogachia and Shyamnagar at Jashore, Bangladesh. This dataset contains 4 categories of Aman paddy leaves. The leaf images were captured by smart phones. There are 560 images of Aman paddy leaves. The data collection procedure was carried out according to the guidelines of Bangladesh Agricultural Research Institute (BARI). We meticulously categorized the entire dataset with regard to the LCC level and validated the data with the assistance of domain specialists. Hence, the images are analyzed and categorized with standards. The dataset is utilized for recognizing Leaf Color Chart level which will help of farmers recommending nitrogen fertilizer in their paddy fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477451PMC
http://dx.doi.org/10.1016/j.dib.2023.109516DOI Listing

Publication Analysis

Top Keywords

paddy leaves
16
dataset paddy
8
leaf color
8
color chart
8
aman paddy
8
dataset
7
paddy
5
paddynet organized
4
organized dataset
4
leaves
4

Similar Publications

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Accurate photosynthetic parameters obtained from photosynthetic light-response curves (LRCs) are crucial for enhancing our comprehension of plant photosynthesis. However, the task of fitting LRCs is still demanding due to diverse variations in LRCs under different environmental conditions, as previous models were evaluated based on a limited number of leaf traits and a small number of LRCs. This study aimed to compare the performance of nine LRC models in fitting a set of 108 LRCs measured from paddy rice ( L.

View Article and Find Full Text PDF

Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy.

J Environ Manage

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.

Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.

View Article and Find Full Text PDF

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

Comparative Genomics and Pathogenicity Analysis of Three Fungal Isolates Causing Barnyard Grass Blast.

J Fungi (Basel)

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.

Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!