This dataset consists of three groups of hyperspectral images of apple tree plants. The first group of images consists of a temporal monitoring of seven apple tree plants, infected with fire blight (, and six control plants over a period of 15 days. The second group of images includes a temporal monitoring of three infected plants, seven plants subjected to water stress, and seven control plants. The third group of images corresponds to acquisitions made in the orchard on nine trees showing symptoms of fire blight and six control trees. The pixel locations of infected areas have been provided for all images featuring symptomatic plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477057PMC
http://dx.doi.org/10.1016/j.dib.2023.109532DOI Listing

Publication Analysis

Top Keywords

apple tree
12
fire blight
12
group images
12
monitoring apple
8
tree plants
8
temporal monitoring
8
blight control
8
control plants
8
plants
7
images
6

Similar Publications

Replicase components and the untranslated region of RNA2 synergistically regulate pathogenicity differentiation among different isolates of cucumber mosaic virus.

Int J Biol Macromol

January 2025

Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China. Electronic address:

Changes in critical sites of virus-encoded protein or cis-acting element generally determine pathogenicity differentiation among different isolates of the same plant virus. Cucumber mosaic virus (CMV) isolates, which exhibit the most extensively known host range, demonstrate notable pathogenicity differentiation. This study focuses on the severe isolate CMV and mild isolate CMV, both affecting several species within the Solanaceae family, to identify the key factors regulating pathogenicity differentiation.

View Article and Find Full Text PDF

Introduction: Recycling drenchers used to apply postharvest fungicides in pome fruit may spread microorganisms, i.e., plant and foodborne pathogens, that increase fruit loss and impact food safety.

View Article and Find Full Text PDF

Molecular structure prediction and homology detection offer promising paths to discovering protein function and evolutionary relationships. However, current approaches lack statistical reliability assurances, limiting their practical utility for selecting proteins for further experimental and in-silico characterization. To address this challenge, we introduce a statistically principled approach to protein search leveraging principles from conformal prediction, offering a framework that ensures statistical guarantees with user-specified risk and provides calibrated probabilities (rather than raw ML scores) for any protein search model.

View Article and Find Full Text PDF

Introduction: Accurate diagnosis of the water status of fruit trees is a prerequisite for precise irrigation. Measurement of leaf turgor pressure provides a means to explore the water utilization mechanisms of fruit trees and their responses to water stress. However, there are few studies on the use of daily minimum leaf turgor pressure (Ppmax) to indicate water information in apple tree.

View Article and Find Full Text PDF

Overexpression of apple MdNRT1.7 enhances low nitrogen tolerance via the regulation of ROS scavenging.

Int J Biol Macromol

December 2024

Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang 550025, Guizhou Province, China. Electronic address:

Article Synopsis
  • Low nitrogen stress negatively impacts crop yields, and this study focuses on the role of the nitrate transporter MdNRT1.7 in apples (Malus domestica) to understand its function in combating this stress.
  • Researchers used tobacco plants to investigate MdNRT1.7's regulation, identifying a transcription factor (MdJUB1) that inhibits its expression.
  • Results showed that overexpressing MdNRT1.7 improved nitrogen metabolism and stress tolerance in tobacco by increasing beneficial compounds and enzyme activities while decreasing harmful reactive oxygen species.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!