Development of energetic catalysts with high energy density and strong catalytic activity has become the focus and frontier of research, which is expected to improve the combustion performance and ballistic properties of solid propellants. In this work, three energetic catalysts, M(HO)(AFCA)·HO (AFCA = 3-aminofurazan-4-carboxylic acid, M = Cu, Co, Fe), are designed and synthesized based on the coordination reaction of transition metal ions and the energetic ligand. The target products are characterized by single crystal X-ray diffraction, Fourier transform infrared spectroscopy, differential thermal analysis, optical microscopy, and scanning electron microscopy. The results reveal that Cu(HO)(AFCA)·HO crystallizes in the monoclinic space group, = 1.918 g cm. Co(HO)(AFCA)·HO, and Fe(HO)(AFCA)·HO belong to orthorhombic space groups, their density is 1.886 g cm and 1.856 g cm, respectively. In addition, the designed catalysts show higher catalytic activity than some reported catalysts such as Co(en)(HBTI)]·en (HBTI = 4,5-bis(1-tetrazol-5-yl)-1-imida-zole), Co-AzT (HAzT = 5,5'-azotetrazole-1,1'-diol), and [Pb(BTF)(HO)] (BTF = 4,4'-oxybis [3,3'-(1-hydroxy-tetrazolyl)]furazan) for the thermal decomposition of ammonium perchlorate (AP). The high-temperature decomposition peak temperatures of AP/Cu(HO)(AFCA)·HO, AP/Co(HO)(AFCA)·HO, and AP/Fe(HO) (AFCA)·HO are decreased by 120.3 °C, 151.8 °C and 89.5 °C compared to the case of pure AP, while the heat release of them are increased by 768.8 J g, 780.5 J g, 750.9 J g, respectively. Moreover, the burning rates of solid propellants composed of AP/Cu(AFCA)(HO)·HO, AP/Co(AFCA)(HO)·HO and AP/Fe(AFCA)(HO)·HO are increased by 2.16 mm s, 2.53 mm s, and 1.57 mm s compared with the case of pure AP. This research shows considerable application prospects in improving the combustion and energy performance of solid propellants, it is also a reference for the design and preparation of other novel energetic catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477948 | PMC |
http://dx.doi.org/10.1039/d3ra03585a | DOI Listing |
J Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.
Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023 China. Electronic address:
Electrochemical glycerol oxidation reaction (GOR) presents a promising approach for converting excess glycerol (GLY) into high-value-added products. However, the complex mechanism and the challenge of achieving selectivity for diverse products make GOR difficult to address in both experimental and theoretical studies. In this work, three nitrogen-doped graphene-supported copper single-atom catalysts (CuN@Gra SACs, x = 2-4) were selected as the model system due to their simple structure, excellent conductivity and high structural stability.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.
Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!