AI Article Synopsis

  • A study was conducted to create a CT-based radiomic model that could predict how well non-small cell lung cancer patients would respond to PD-1/PD-L1 immunotherapy, using data collected from June 2015 to February 2022.
  • Researchers analyzed CT scans from 237 patients, classifying them as responders or non-responders, and developed a scoring model by extracting and weighting radiomic features.
  • The model showed promising results, with high accuracy rates (AUC of 0.85 in the training set and 0.80 in the test set), outperforming standard PD-L1 models and indicating that these scores can effectively help anticipate patient responses to treatment.

Article Abstract

Objective To develop a CT-based weighted radiomic model that predicts tumor response to programmed death-1(PD-1)/PD-ligand 1(PD-L1)immunotherapy in patients with non-small cell lung cancer.Methods The patients with non-small cell lung cancer treated by PD-1/PD-L1 immune checkpoint inhibitors in the Peking Union Medical College Hospital from June 2015 to February 2022 were retrospectively studied and classified as responders(partial or complete response)and non-responders(stable or progressive disease).Original radiomic features were extracted from multiple intrapulmonary lesions in the contrast-enhanced CT scans of the arterial phase,and then weighted and summed by an attention-based multiple instances learning algorithm.Logistic regression was employed to build a weighted radiomic scoring model and the radiomic score was then calculated.The area under the receiver operating characteristic curve(AUC)was used to compare the weighted radiomic scoring model,PD-L1 model,clinical model,weighted radiomic scoring + PD-L1 model,and comprehensive prediction model.Results A total of 237 patients were included in the study and randomized into a training set(=165)and a test set(=72),with the mean ages of(64±9)and(62±8)years,respectively.The AUC of the weighted radiomic scoring model reached 0.85 and 0.80 in the training set and test set,respectively,which was higher than that of the PD-L1-1 model(=37.30,<0.001 and =5.69,=0.017),PD-L1-50 model(=38.36,<0.001 and =17.99,<0.001),and clinical model(=11.40,<0.001 and =5.76,=0.016).The AUC of the weighted scoring model was not different from that of the weighted radiomic scoring + PD-L1 model and the comprehensive prediction model(both >0.05).Conclusion The weighted radiomic scores based on pre-treatment enhanced CT images can predict tumor responses to immunotherapy in patients with non-small cell lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3881/j.issn.1000-503X.15705DOI Listing

Publication Analysis

Top Keywords

weighted radiomic
20
radiomic scoring
16
non-small cell
12
cell lung
12
radiomic
8
radiomic score
8
predicts tumor
8
tumor response
8
patients non-small
8
scoring model
8

Similar Publications

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

Radiomics of Periprostatic Fat and Tumor Lesion Based on MRI Predicts the Pathological Upgrading of Prostate Cancer from Biopsy to Radical Prostatectomy.

Acad Radiol

December 2024

Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 35005, China (W-Q.L., Y.W., Z-B.K., B.L., X-H.W., X-Y.H., Z-J.C., J-Y.C., S-H.C., Y-T.X., F.L., D-N.C., Q-S.Z., X-Y.X., N.X.); Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China (W-Q.L., Y.W., Z-B.K., B.L., X-H.W., X-Y.H., Z-J.C., J-Y.C., S-H.C., Y-T.X., F.L., D-N.C., Q-S.Z., X-Y.X., N.X.); Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China (X-Y.X., N.X.). Electronic address:

Rationale And Objectives: To assess the predictive value of MRI-based radiomics of periprostatic fat (PPF) and tumor lesions for predicting Gleason score (GS) upgrading from biopsy to radical prostatectomy (RP) in prostate cancer (PCa).

Methods: A total of 314 patients with pathologically confirmed prostate cancer (PCa) after radical prostatectomy (RP) were included in the study. The patients were randomly assigned to the training cohort (n = 157) and the validating cohort (n = 157) in a 1:1 ratio.

View Article and Find Full Text PDF

Background: Accurate identification of pathologic grade before operation is helpful for guiding clinical treatment decisions and improving the prognosis for soft tissue sarcoma (STS).

Purpose: To construct and assess a magnetic resonance imaging (MRI)-based radiomics nomogram incorporating intratumoral habitats (subregions of clusters of voxels containing similar features) and peritumoral features for the preoperative prediction of the pathological grade of STS.

Methods: The MRI data of 145 patients with STS (74 low-grade and 71 high-grade) from 4 hospitals were retrospectively collected, including enhanced T1-weighted and fat-suppressed-T2-weighted sequences.

View Article and Find Full Text PDF

Artificial intelligence and MRI in sinonasal tumors discrimination: where do we stand?

Eur Arch Otorhinolaryngol

December 2024

Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Ospedale di Circolo, Varese, Italy.

Background: Artificial intelligence (AI) demonstrates high potential when applied to radiomic analysis of magnetic resonance imaging (MRI) to discriminate sinonasal tumors. This can enhance diagnostic suspicion beyond visual assessment alone and prior to biopsy, leading to expedite the diagnostic timeline and the treatment planning. The aim of the present work is to evaluate the current advancements and accuracy of this technology in this domain.

View Article and Find Full Text PDF

Automated classification of pathological differentiation in head and neck squamous cell carcinoma using combined radiomics models from CET1WI and T2WI.

Clin Oral Investig

December 2024

Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.

Objectives: This study aims to develop an automated radiomics-based model to grade the pathological differentiation of head and neck squamous cell carcinoma (HNSCC) and to assess the influence of various magnetic resonance imaging (MRI) sequences on the model's performance.

Materials And Methods: We retrospectively analyzed MRI data from 256 patients across two medical centers, including both contrast-enhanced T1-weighted images (CET1WI) and T2-weighted images (T2WI). Regions of interest were delineated for radiomics feature extraction, followed by dimensionality reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!