Objective To develop a CT-based weighted radiomic model that predicts tumor response to programmed death-1(PD-1)/PD-ligand 1(PD-L1)immunotherapy in patients with non-small cell lung cancer.Methods The patients with non-small cell lung cancer treated by PD-1/PD-L1 immune checkpoint inhibitors in the Peking Union Medical College Hospital from June 2015 to February 2022 were retrospectively studied and classified as responders(partial or complete response)and non-responders(stable or progressive disease).Original radiomic features were extracted from multiple intrapulmonary lesions in the contrast-enhanced CT scans of the arterial phase,and then weighted and summed by an attention-based multiple instances learning algorithm.Logistic regression was employed to build a weighted radiomic scoring model and the radiomic score was then calculated.The area under the receiver operating characteristic curve(AUC)was used to compare the weighted radiomic scoring model,PD-L1 model,clinical model,weighted radiomic scoring + PD-L1 model,and comprehensive prediction model.Results A total of 237 patients were included in the study and randomized into a training set(=165)and a test set(=72),with the mean ages of(64±9)and(62±8)years,respectively.The AUC of the weighted radiomic scoring model reached 0.85 and 0.80 in the training set and test set,respectively,which was higher than that of the PD-L1-1 model(=37.30,<0.001 and =5.69,=0.017),PD-L1-50 model(=38.36,<0.001 and =17.99,<0.001),and clinical model(=11.40,<0.001 and =5.76,=0.016).The AUC of the weighted scoring model was not different from that of the weighted radiomic scoring + PD-L1 model and the comprehensive prediction model(both >0.05).Conclusion The weighted radiomic scores based on pre-treatment enhanced CT images can predict tumor responses to immunotherapy in patients with non-small cell lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3881/j.issn.1000-503X.15705 | DOI Listing |
Acad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:
Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).
Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).
Acad Radiol
December 2024
Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 35005, China (W-Q.L., Y.W., Z-B.K., B.L., X-H.W., X-Y.H., Z-J.C., J-Y.C., S-H.C., Y-T.X., F.L., D-N.C., Q-S.Z., X-Y.X., N.X.); Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China (W-Q.L., Y.W., Z-B.K., B.L., X-H.W., X-Y.H., Z-J.C., J-Y.C., S-H.C., Y-T.X., F.L., D-N.C., Q-S.Z., X-Y.X., N.X.); Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China (X-Y.X., N.X.). Electronic address:
Rationale And Objectives: To assess the predictive value of MRI-based radiomics of periprostatic fat (PPF) and tumor lesions for predicting Gleason score (GS) upgrading from biopsy to radical prostatectomy (RP) in prostate cancer (PCa).
Methods: A total of 314 patients with pathologically confirmed prostate cancer (PCa) after radical prostatectomy (RP) were included in the study. The patients were randomly assigned to the training cohort (n = 157) and the validating cohort (n = 157) in a 1:1 ratio.
Front Oncol
December 2024
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Background: Accurate identification of pathologic grade before operation is helpful for guiding clinical treatment decisions and improving the prognosis for soft tissue sarcoma (STS).
Purpose: To construct and assess a magnetic resonance imaging (MRI)-based radiomics nomogram incorporating intratumoral habitats (subregions of clusters of voxels containing similar features) and peritumoral features for the preoperative prediction of the pathological grade of STS.
Methods: The MRI data of 145 patients with STS (74 low-grade and 71 high-grade) from 4 hospitals were retrospectively collected, including enhanced T1-weighted and fat-suppressed-T2-weighted sequences.
Eur Arch Otorhinolaryngol
December 2024
Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Ospedale di Circolo, Varese, Italy.
Background: Artificial intelligence (AI) demonstrates high potential when applied to radiomic analysis of magnetic resonance imaging (MRI) to discriminate sinonasal tumors. This can enhance diagnostic suspicion beyond visual assessment alone and prior to biopsy, leading to expedite the diagnostic timeline and the treatment planning. The aim of the present work is to evaluate the current advancements and accuracy of this technology in this domain.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
Objectives: This study aims to develop an automated radiomics-based model to grade the pathological differentiation of head and neck squamous cell carcinoma (HNSCC) and to assess the influence of various magnetic resonance imaging (MRI) sequences on the model's performance.
Materials And Methods: We retrospectively analyzed MRI data from 256 patients across two medical centers, including both contrast-enhanced T1-weighted images (CET1WI) and T2-weighted images (T2WI). Regions of interest were delineated for radiomics feature extraction, followed by dimensionality reduction.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!