In recent years, metal-organic framework (MOF) derivatives have gradually become ideal materials for gas sensors due to their controllable composition, diverse structures and open metal sites. In this research, a simplified hydrothermal method was applied to successfully prepare MOF-derived α-FeO spindles, and an reduction method was then utilized to deposit Pt, Pd and PtPd bimetallic nanoparticles (NPs) on the α-FeO spindles. The effects of noble metals Pt, Pd and PtPd on the gas-sensing properties of FeO were systematically examined. The PtPd/α-FeO sensor has enhanced gas-sensing performance for triethylamine (TEA), especially at PtPd content of 1.5 wt% and mass ratio of Pt : Pd = 90 : 10, where the response of the sensor to 100 ppm TEA at a lower temperature of 150 °C is 442, which is 34 times higher than that of the original α-FeO (response of 13). Additionally, the sensor demonstrated improved response/recovery properties and very respectable selectivity, repeatability, long-term stability within 30 days and lower detection limit (500 ppb) at 150 °C. Combining the results of XPS and O-TPD, the enhanced gas-sensing properties of PtPd bimetallic-modified α-FeO over monometallic (Pt or Pd) modified α-FeO were analyzed, which can be attributed to the chemical and electronic sensitization of noble metals and the synergistic effect of the PtPd bimetallic NPs, resulting in more surface defects and enhanced oxygen adsorption capacity of the sensing material. This work provided an effective gas-sensing material for the low-temperature detection and analysis of triethylamine gas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02110f | DOI Listing |
Small
January 2025
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, Heraklion, 70013, Greece.
Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China. Electronic address:
Nucleic acids detection is essential for diagnosing pathogens; however, traditional methods usually face challenges such as low sensitivity, lengthy reaction times, and strict temperature requirements. This study develops a novel photoelectrochemical (PEC) biosensor that integrates recombinase polymerase amplification (RPA) with a 3D-array titania (TiO) nanorods nanorod electrode, addressing the challenge of achieving sensitive detection of RPA-amplified nucleic acids products, thereby enabling earlier and more reliable pathogen detection. The biosensor utilizes a triple-binding mode involving FITC antibodies, target nucleic acids, and an HRP-streptavidin sandwich structure, significantly improving the bio-functionalization of the electrode surface.
View Article and Find Full Text PDFViruses
November 2024
Division of Water Supply and Sewerage Research, National Institute of Environmental Research, Incheon 22689, Republic of Korea.
Groundwater is an essential drinking water source for humans. However, improper groundwater management leads to fecal contamination and waterborne diseases caused by viral pathogens. Therefore, this study aimed to investigate norovirus (NoV) contamination by conducting nationwide monitoring over five years (2019-2023).
View Article and Find Full Text PDFViruses
November 2024
CSIRO, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia.
One of the key surveillance strategies for the early detection of an African swine fever (ASF) incursion into a country is the sampling of wild or feral pig populations. In Australia, the remote northern regions are considered a risk pathway for ASF incursion due to the combination of high numbers of feral pigs and their close proximity to countries where ASF is present. These regions primarily consist of isolated arid rangelands with high average environmental temperatures.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), Leninskiy Prospekt 31, 119071 Moscow, Russia.
The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!