A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PtPd NPs-functionalized metal-organic framework-derived α-FeO porous spindles for efficient low-temperature detection of triethylamine. | LitMetric

In recent years, metal-organic framework (MOF) derivatives have gradually become ideal materials for gas sensors due to their controllable composition, diverse structures and open metal sites. In this research, a simplified hydrothermal method was applied to successfully prepare MOF-derived α-FeO spindles, and an reduction method was then utilized to deposit Pt, Pd and PtPd bimetallic nanoparticles (NPs) on the α-FeO spindles. The effects of noble metals Pt, Pd and PtPd on the gas-sensing properties of FeO were systematically examined. The PtPd/α-FeO sensor has enhanced gas-sensing performance for triethylamine (TEA), especially at PtPd content of 1.5 wt% and mass ratio of Pt : Pd = 90 : 10, where the response of the sensor to 100 ppm TEA at a lower temperature of 150 °C is 442, which is 34 times higher than that of the original α-FeO (response of 13). Additionally, the sensor demonstrated improved response/recovery properties and very respectable selectivity, repeatability, long-term stability within 30 days and lower detection limit (500 ppb) at 150 °C. Combining the results of XPS and O-TPD, the enhanced gas-sensing properties of PtPd bimetallic-modified α-FeO over monometallic (Pt or Pd) modified α-FeO were analyzed, which can be attributed to the chemical and electronic sensitization of noble metals and the synergistic effect of the PtPd bimetallic NPs, resulting in more surface defects and enhanced oxygen adsorption capacity of the sensing material. This work provided an effective gas-sensing material for the low-temperature detection and analysis of triethylamine gas.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt02110fDOI Listing

Publication Analysis

Top Keywords

low-temperature detection
8
α-feo spindles
8
ptpd bimetallic
8
noble metals
8
gas-sensing properties
8
enhanced gas-sensing
8
150 °c
8
ptpd
6
α-feo
6
ptpd nps-functionalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!