AI Article Synopsis

  • Downy mildew (DM), caused by the fungus Plasmopara viticola, is a major problem in grape growing and leads to heavy fungicide use, prompting a search for natural alternatives.
  • This study explored how oregano essential oil vapor (OEOV) affects DM-infected grapevines by examining genetic changes that occur when OEOV is applied before and after infection.
  • Results showed that OEOV significantly reduced DM sporulation and involved new gene pathways related to plant immunity, offering insights into natural antifungal strategies that do not rely on traditional methods.

Article Abstract

Downy mildew (DM; Plasmopara viticola) is amongst the most severe fungal diseases in viticulture and the reason for the majority of fungicide applications. To reduce synthetic and copper-based fungicides, there is an urgent need for natural alternatives, which are being increasingly tested by the industry and the research community. However, their mode of action remains unclear. Therefore, our study aimed to investigate the transcriptomic changes induced by oregano essential oil vapour (OEOV) in DM-infected grapevines. OEOV was applied at different time points before and after DM infection to differentiate between a priming effect and a direct effect. Both pre-DM treatment with OEOV and post-infection treatment resulted in a significant reduction in DM sporulation. RNA-seq, followed by differential gene expression and weighted gene co-expression network analysis, identified co-expressed gene modules associated with secondary metabolism, pathogen recognition and response. Surprisingly, the molecular mechanisms underlying the efficiency of OEOV against DM appear to be independent of stilbene synthesis, and instead involve genes from a putative signalling pathway that has yet to be characterized. This study enhances our understanding of the molecular regulation of innate plant immunity and provides new insights into the mode of action of alternative natural antifungal agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482922PMC
http://dx.doi.org/10.1038/s41598-023-41981-xDOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
8
downy mildew
8
mildew plasmopara
8
plasmopara viticola
8
mode action
8
unravelling molecular
4
mechanisms involved
4
involved resistance
4
resistance priming
4
priming downy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!