Stacking transfer of wafer-scale graphene-based van der Waals superlattices.

Nat Commun

National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.

Published: September 2023

High-quality graphene-based van der Waals superlattices are crucial for investigating physical properties and developing functional devices. However, achieving homogeneous wafer-scale graphene-based superlattices with controlled twist angles is challenging. Here, we present a flat-to-flat transfer method for fabricating wafer-scale graphene and graphene-based superlattices. The aqueous solution between graphene and substrate is removed by a two-step spinning-assisted dehydration procedure with the optimal wetting angle. Proton-assisted treatment is further used to clean graphene surfaces and interfaces, which also decouples graphene and neutralizes the doping levels. Twist angles between different layers are accurately controlled by adjusting the macroscopic stacking angle through their wafer flats. Transferred films exhibit minimal defects, homogeneous morphology, and uniform electrical properties over wafer scale. Even at room temperature, robust quantum Hall effects are observed in graphene films with centimetre-scale linewidth. Our stacking transfer method can facilitate the fabrication of graphene-based van der Waals superlattices and accelerate functional device applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482836PMC
http://dx.doi.org/10.1038/s41467-023-41296-5DOI Listing

Publication Analysis

Top Keywords

graphene-based van
12
van der
12
der waals
12
waals superlattices
12
stacking transfer
8
wafer-scale graphene-based
8
graphene-based superlattices
8
twist angles
8
transfer method
8
graphene-based
5

Similar Publications

Article Synopsis
  • The text discusses how graphene-based van der Waals heterostructures can manipulate spin-orbit coupling (SOC) through proximity effects, emphasizing the importance of understanding features near the Dirac point and the introduction of a unique "radial Rashba SOC."
  • It presents a method to differentiate between conventional Rashba SOC and radial Rashba SOC, utilizing large-scale magnetotransport calculations like transverse magnetic focusing and Dyakonov-Perel spin relaxation to reveal distinct experimental signatures.
  • Additionally, the study proposes a way to estimate the Rashba angle using magnetic field responses and explores the effects of Dresselhaus SOC, hinting at potential applications in radial superconducting diodes.
View Article and Find Full Text PDF

Due to their ultra-high sensitivity, solution-gated graphene-based field-effect transistors (SG-GFET) have been proposed for applications in bio-sensing. However, challenges regarding the functionalization of GFETs have prevented their applications in clinical diagnostics so far. Here GFET sensors based on van der Waals (vdW) heterostructures of single-layer graphene layered with a molecular ≈1 nm thick carbon nanomembrane (CNM) are presented.

View Article and Find Full Text PDF

Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity.

View Article and Find Full Text PDF

The applications of two-dimensional semiconductors strictly require the reliable integration of ultrathin high-κ dielectric materials on the semiconductor surface to enable fine gate control and low power consumption. As layered oxide materials, MoO can be potentially used as a high-κ two-dimensional material with a larger bandgap and high electron affinity. In this work, relying on the oxidization of molybdenum chlorides, we have synthesized α-MoO single crystals, which can be easily exfoliated into flakes with thicknesses of a few nanometers and sizes of hundreds of micrometers and fine thermal stability.

View Article and Find Full Text PDF

Intrinsic anomalous, spin and valley Hall effects in 'ex-so-tic' van-der-Waals structures.

Sci Rep

October 2024

Faculty of Physics and Astronomy, ISQI, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.

We consider the anomalous, spin, valley, and valley spin Hall effects in a pristine graphene-based van-der-Waals (vdW) heterostructure consisting of a bilayer graphene (BLG) sandwiched between a semiconducting van-der-Waals material with strong spin-orbit coupling (e.g., ) and a ferromagnetic insulating vdW material (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!