Training deep neural network classifiers for electrocardiograms (ECGs) requires sufficient data. However, imbalanced datasets pose a major problem for the training process and hence data augmentation is commonly performed. Generative adversarial networks (GANs) can create synthetic ECG data to augment such imbalanced datasets. This review aims at identifying the present literature concerning synthetic ECG signal generation using GANs to provide a comprehensive overview of architectures, quality evaluation metrics, and classification performances. Thirty publications from the years 2019 to 2022 were selected from three separate databases. Nine publications used a quality evaluation metric neglecting classification, eleven performed a classification but omitted a quality evaluation metric, and ten publications performed both. Twenty different quality evaluation metrics were observed. Overall, the classification performance of databases augmented with synthetically created ECG signals increased by 7 % to 98 % in accuracy and 6 % to 97 % in sensitivity. In conclusion, synthetic ECG signal generation using GANs represents a promising tool for data augmentation of imbalanced datasets. Consistent quality evaluation of generated signals remains challenging. Hence, future work should focus on the establishment of a gold standard for quality evaluation metrics for GANs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2023.102632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!