A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Malignant Mesothelioma subtyping via sampling driven multiple instance prediction on tissue image and cell morphology data. | LitMetric

Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposure. It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in which significant components of both of the previous subtypes are present. Early diagnosis and identification of the subtype informs treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, and specifically the recognition of transitional features from routine histology slides has a high level of inter-observer variability. In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothelioma subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks on bags of image patches that allows learning on a wider range of relevant instances compared to max or top-N based MIL approaches. We also investigate augmenting the instance representation to include aggregate cellular morphology features from cell segmentation. The proposed MIL approach enables identification of malignant mesothelial subtypes of specific tissue regions. From this a continuous characterisation of a sample according to predominance of sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by currently used subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associated with different subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores with an AUROC of 0.89±0.05 for this task. The dataset and developed methodology is available for the community at: https://github.com/measty/PINS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2023.102628DOI Listing

Publication Analysis

Top Keywords

malignant mesothelioma
16
mesothelioma subtyping
8
multiple instance
8
mil approach
8
malignant
5
subtypes
5
subtyping sampling
4
sampling driven
4
driven multiple
4
instance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!