Learnable DoG convolutional filters for microcalcification detection.

Artif Intell Med

Department of Electrical and Information Engineering, University of Cassino and Southern Latium, Cassino, FR 03043, Italy. Electronic address:

Published: September 2023

Difference of Gaussians (DoG) convolutional filters are one of the earliest image processing methods employed for detecting microcalcifications on mammogram images before machine and deep learning methods became widespread. DoG is a blob enhancement filter that consists in subtracting one Gaussian-smoothed version of an image from another less Gaussian-smoothed version of the same image. Smoothing with a Gaussian kernel suppresses high-frequency spatial information, thus DoG can be regarded as a band-pass filter. However, due to their small size and overimposed breast tissue, microcalcifications vary greatly in contrast-to-noise ratio and sharpness. This makes it difficult to find a single DoG configuration that enhances all microcalcifications. In this work, we propose a convolutional network, named DoG-MCNet, where the first layer automatically learns a bank of DoG filters parameterized by their associated standard deviations. We experimentally show that when employed for microcalcification detection, our DoG layer acts as a learnable bank of band-pass preprocessing filters and improves detection performance by 4.86% AUFROC over baseline MCNet and 1.53% AUFROC over state-of-the-art multicontext ensemble of CNNs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2023.102629DOI Listing

Publication Analysis

Top Keywords

dog convolutional
8
convolutional filters
8
microcalcification detection
8
gaussian-smoothed version
8
version image
8
dog
6
learnable dog
4
filters
4
filters microcalcification
4
detection difference
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!