Chimeric antigen receptor (CAR)-modified natural killer (NK) cells are recognized as promising immunotherapeutic agents for cancer treatment. However, the efficacy and trafficking of CAR-NK cells in solid tumors are hindered by the complex barriers present in the tumor microenvironment (TME). We have developed a novel strategy that utilizes living CAR-NK cells as carriers to deliver anticancer drugs specifically to the tumor site. We also introduce a time-lapse method for evaluating the efficacy and tumor specificity of CAR-NK cells using a two-photon microscope in live mouse models and three-dimensional (3D) tissue slide cultures. Our results demonstrate that CAR-NK cells exhibit enhanced antitumor immunity when combined with photosensitive chemicals in both in vitro and in vivo tumor models. Additionally, we have successfully visualized the trafficking, infiltration, and accumulation of drug-loaded CAR-NK cells in deeply situated TME using non-invasive intravital two-photon microscopy. Our findings highlight that tumor infiltration of CAR-NK cells can be intravitally monitored through the two-photon microscope approach. In conclusion, our study demonstrates the successful integration of CAR-NK cells as drug carriers and paves the way for combined cellular and small-molecule therapies in cancer treatment. Furthermore, our 3D platform offers a valuable tool for assessing the behavior of CAR cells within solid tumors, facilitating the development and optimization of immunotherapeutic strategies with clinical imaging approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2023.09.007 | DOI Listing |
Cell Prolif
December 2024
Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.
View Article and Find Full Text PDFCancer Control
December 2024
Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
Background: Natural killer (NK) cell immunotherapy has shown promising therapeutic potential for acute myeloid leukemia (AML), especially with advancements in chimeric antigen receptor-engineered NK cells (CAR-NK) and artificial intelligence (AI). Despite these developments, the field lacks comprehensive bibliometric analyses to identify research hotspots and trends, which could guide future precision treatments.
Methods: A bibliometric analysis of NK cell immunotherapy for AML was conducted using literature from 2000 to 2023 retrieved from the Web of Science Core Collection database.
Cytotherapy
November 2024
Department of Medicine (Hematology), The Ottawa Hospital, Ottawa, Ontario, Canada. Electronic address:
Background: Chimeric antigen receptor (CAR) engineered NK cells (CAR-NK) are a novel approach to the immunotherapy of hematologic malignancies which seeks to overcome some of the challenges faced by CAR-T cells (CAR-T). With few published clinical studies, preclinical studies can identify strategies to accelerate clinical translation. We conducted a systematic review on the preclinical in vivo use of CAR-NK for the treatment of hematologic malignancies to assess these therapies in a holistic and unbiased manner.
View Article and Find Full Text PDFLeuk Lymphoma
December 2024
Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
January 2025
Third Rock Ventures, Boston, MA.
Neurologic disease remains a cause of incalculable suffering, a formidable public health burden, and a wilderness of complex biology and medicine. At the same time, advances in basic science, technology, and the clinical development toolkit bring meaningful benefit for patients along with realistic hope for those whose conditions remain inadequately treated. This perspective focuses on cell-based therapies for neurologic disease, with particular emphasis on neuroimmunologic disorders and on the immunologic considerations of cell therapy for nonimmune conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!