River connectivity determines microbial assembly processes and leads to alternative stable states in river networks.

Sci Total Environ

Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.

Published: December 2023

River network is a common form of lotic ecosystems. Variances in river connection modes would form networks with significantly different structures, and further affect aquatic organisms. Microbial communities are vital organisms of river networks, they participate in numerous biogeochemical processes. Identifying associations between microbial community and structural features of river networks are essential for maintaining environmental quality. Thus, dendritic (DRN) and trellised river networks (TRN) were studied by combining molecular biological tools, ecological theory and hydrodynamic calculation. Results illustrated that river connectivity, a vital structural feature exhibiting mass transport ability of river network, increased relative importance of homogeneous selection processes in microbial assembly, which would further shape community with alternative stable states. Between the two researched river networks, DRN possessed higher connectivity, which made homogeneous selection as the driving force in community assembly. The microbial communities in DRN were consisted of species occupying similar ecological niche, and exhibited two alternative stable states, which can decrease influences of environmental disturbance on community composition. On the contrary, lower connectivity of TRN decreased proportions of homogeneous selection in community assembly, which further led to species occupying varied ecological niche. The microbial community exhibited only one stable state, and environmental disturbance would cause loss of ecological niche and significantly alter community composition. This study could provide useful information for the optimization of river connection engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166797DOI Listing

Publication Analysis

Top Keywords

river networks
20
alternative stable
12
stable states
12
homogeneous selection
12
ecological niche
12
river
11
river connectivity
8
microbial assembly
8
river network
8
river connection
8

Similar Publications

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

Comprehensive discovery and functional characterization of the noncanonical proteome.

Cell Res

January 2025

The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.

The systematic identification and functional characterization of noncanonical translation products, such as novel peptides, will facilitate the understanding of the human genome and provide new insights into cell biology. Here, we constructed a high-coverage peptide sequencing reference library with 11,668,944 open reading frames and employed an ultrafiltration tandem mass spectrometry assay to identify novel peptides. Through these methods, we discovered 8945 previously unannotated peptides from normal gastric tissues, gastric cancer tissues and cell lines, nearly half of which were derived from noncoding RNAs.

View Article and Find Full Text PDF

Predicting microplastic quantities in Indonesian provincial rivers using machine learning models.

Sci Total Environ

January 2025

Research Group of Physics and Technology of Advanced Materials, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung, Jawa Barat 40132, Indonesia; Department of Physics, Faculty of Science, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan, Lampung 35365, Indonesia. Electronic address:

Microplastic pollution has surfaced as a critical environmental concern, affecting ecosystems and human health globally. This study explored the application of several machine learning models, including the Tree algorithm, k-Nearest Neighbors (kNN), Random Forest (RF), Linear Regression (LR), Support Vector Machine (SVM), and Neural Networks (NN), to predict microplastic concentrations in the rivers of Indonesia's 24 provinces. By utilizing both environmental and anthropogenic data, the Tree algorithm exhibited the best performance, achieving a coefficient of determination (R) of 0.

View Article and Find Full Text PDF

Ensuring the supply of safe and high-quality drinking water can be compromised by the presence of chironomid larvae in drinking water treatment plants (DWTPs), which may contaminate municipal water systems through freshwater resources. Chironomids are dominant species known for their resilience to a broad range of extreme aquatic environments. This study aimed to identify the morphological characteristics and obtain genetic information of the chironomid Paratanytarsus grimmii found in the water intake source and freshwater resource of DWTPs in Korea, highlighting the potential possibility of a parthenogenetic chironomid outbreak within DWTP networks.

View Article and Find Full Text PDF

Context.—: Small biopsies are used for histologic, immunophenotypic, cytogenetic, molecular genetic, and other ancillary studies. Occasionally, this diagnostic tissue is exhausted before molecular testing can be performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!