A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exopolysaccharides from endophytic Glutamicibacter halophytocota KLBMP 5180 functions as bio-stimulants to improve tomato plants growth and salt stress tolerance. | LitMetric

Exopolysaccharides from endophytic Glutamicibacter halophytocota KLBMP 5180 functions as bio-stimulants to improve tomato plants growth and salt stress tolerance.

Int J Biol Macromol

The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China. Electronic address:

Published: December 2023

Microbial exopolysaccharides (EPSs) can promote plants growth and protect them against various abiotic stresses, but the role of actinobacteria-produced EPSs in plant growth promoting is still less known. Here, we aim to explore the effect of EPSs from an endophyte Glutamicibacter halophytocota KLBMP 5180 on tomato seeds germination and seedlings growth under salt stress. Our study revealed that 2.0 g/L EPSs resulted in increased seed germination rate by 23.5 % and 11.0 %, respectively, under 0 and 200 mM NaCl stress conditions. Further pot experiment demonstrated that EPSs significantly promoted seedlings growth under salt stress, with increased height, root length and fibrous roots number. Plant physiological traits revealed that EPSs increased chlorophyll content, enhanced the activity of antioxidant enzymes, soluble sugar, and K concentration in seedlings; malondialdehyde and Na contents were reduced. Additionally, auxin, abscisic acid, jasmonic acid, and salicylic acid were accumulated significantly in seedlings after EPSs treatment. Furthermore, we identified 1233 differentially expressed genes, and they were significantly enriched in phytohormone signal transmission, phenylpropanoid biosynthesis, and protein processing in endogenous reticulum pathways, etc. Our results suggest that KLBMP 5180-produced EPSs effectively ameliorated NaCl stress in tomato plants by triggering complex regulation mechanism, and showed application potentiality in agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126717DOI Listing

Publication Analysis

Top Keywords

growth salt
12
salt stress
12
glutamicibacter halophytocota
8
halophytocota klbmp
8
klbmp 5180
8
tomato plants
8
plants growth
8
epss
8
seedlings growth
8
epss increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!