Design of cationic surfactant reinforced carrageenan waterproof composite films and applied as water induced electricity generator.

Int J Biol Macromol

The Center of Experiment, Fujian Police College, Fuzhou 350000, China. Electronic address:

Published: December 2023

Carrageenan (CR) is a renewable polysaccharide material for packaging application due to its good film-forming property, but its use can be limited by the water solubility. In this research, CR hydrogels were modified by quaternary ammonium surfactants with different length of hydrocarbon tails (n, 8≦n≦16) by adsorption method and waterproof films were obtained after drying. The composition and charge interaction of composite films was confirmed by FTIR. Both thermogravimetric analysis and energy dispersive spectrometer indicated that the surfactant ions replaced K to form complexes with CR. The X-ray diffraction revealed the decreased amorphous nature of composite films compared to neat CR film. Water-related physical properties, such as water content, weight percentage change after contact with water, water vapor transmission, and water contact angle were intimately related to n. When 8≦n≦14, the waterproof properties were enhanced with the increase of n. Meanwhile, the waterproof property of composite film was ascertained by the no leakage result in the boiling water packaging experiment. When n = 16, sandwich structure was found in the sectional micromorphology images, and water bag structure formed after immersed into water. By comparing the mechanical properties of the composite films in different condition, we found that quaternary ammonium surfactants improved significantly the tensile strength in water and increased elongation at break in dry state. The composite films can be used as water induced voltage generator for their polyelectrolyte nature. Benefiting from the high stability of the composite films in water, their water-induced voltage generation process had good recyclability. Due to the antimicrobial activity of the quaternary ammonium salts and the waterproof property, composite films were more stable and degraded more slowly than neat CR film in nature environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126713DOI Listing

Publication Analysis

Top Keywords

composite films
28
water
12
quaternary ammonium
12
composite
8
films
8
water induced
8
ammonium surfactants
8
neat film
8
waterproof property
8
property composite
8

Similar Publications

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.

View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

This study aimed to develop eco-friendly multifunctional nanocellulose (NC) hybrid films with tailored properties for versatile applications including packaging and photovoltaics. Hybrid films composed by cellulose nanocrystals (CNC) and carboxymethylated cellulose nanofibrils (CNF) were produced at various mass ratio (CNC - 100:0 to 0:100). Montmorillonite clay (MTM) was incorporated (50 % by mass) into the CNC:CNF films.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Robust and ultra-thin nanocellulose/MXene composite film and its performance in efficient electricity-generation and sensing.

Int J Biol Macromol

December 2024

Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:

The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!