A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism. | LitMetric

Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism.

Curr Biol

Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. Electronic address:

Published: September 2023

A wide variety of maternally transmitted endosymbionts in insects are associated with reproductive parasitism, whereby they interfere with host reproduction to increase the ratio of infected females and spread within populations. Recent successes in identifying bacterial factors responsible for reproductive parasitism as well as further omics approaches have highlighted the common appearance of deubiquitinase domains, although their biological roles-in particular, how they link to distinct manipulative phenotypes-remain poorly defined. Spiroplasma poulsonii is a helical and motile bacterial endosymbiont of Drosophila, which selectively kills male progeny with a male-killing toxin Spaid (S. poulsonii androcidin), which encodes an ovarian tumor (OTU) deubiquitinase domain. Artificial expression of Spaid in flies reproduces male-killing-associated pathologies that include abnormal apoptosis and neural defects during embryogenesis; moreover, it highly accumulates on the dosage-compensated male X chromosome, congruent with cellular defects such as the DNA damage/chromatin bridge breakage specifically induced upon that chromosome. Here, I show that without the function of OTU, Spaid is polyubiquitinated and degraded through the host ubiquitin-proteasome pathway, leading to the attenuation of male-killing activity as shown previously. Furthermore, I find that Spaid utilizes its OTU domain to deubiquitinate itself in an intermolecular manner. Collectively, the deubiquitinase domain of Spaid serves as a self-stabilization mechanism to facilitate male killing in flies, optimizing a molecular strategy of endosymbionts that enables the efficient manipulation of the host at a low energetic cost.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2023.08.032DOI Listing

Publication Analysis

Top Keywords

reproductive parasitism
12
self-stabilization mechanism
8
deubiquitinase domain
8
spaid
5
mechanism encoded
4
encoded bacterial
4
bacterial toxin
4
toxin facilitates
4
facilitates reproductive
4
parasitism wide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!