Background: Patients with Duchenne Muscular Dystrophy (DMD) have gait disorders. Therefore, specific gait assessment tools are needed.
Aims: The aim of this study was to develop a gait assessment instrument for DMD patients (DMD-GAS), and investigate its validity and reliability.
Study Design: The scale was developed considering the expert opinions which included 10 physiotherapists who had experience in the management of patients with DMD, and the Content Validity Index (CVI) was calculated. The final version of the DMD-GAS that was agreed upon the experts consisted of 10 items, and each item scored between 0 and 2. The intra-rater reliability was established by the video analysis of children with a 1-month interval and inter-rater reliability was determined by the scores of 3 physiotherapists.
Subjects: The study included 56 patients with DMD.
Outcome Measures: The criterion validity was determined by investigating the relationship between the total score of the DMD-GAS and Motor Function Measure (MFM), 6 Minute Walk Test (6MWT), and the data obtained from GAITRite.
Results: The CVI of the DMD-GAS was 0.90 (p < 0.05). The construct validity and internal consistency of the DMD-GAS were excellent as well as the intra- and inter-rater reliability (>0.90). Moderate-to-very strong correlations were found between the total score of the DMD-GAS and the MFM-total score (r = 0.78), 6MWT (r = 0.71), gait speed (r = 0.50), stride length (r = 0.56), and base of support (r = -0.70) (p < 0.01).
Conclusions: The results indicated that DMD-GAS was a reliable and valid instrument to determine gait characteristics of the patients with DMD in clinical settings.
Clinical Trial Number: NCT05244395.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.earlhumdev.2023.105843 | DOI Listing |
Mol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFActa Med Philipp
November 2024
Division of Pediatric Pulmonology, Department of Pediatrics, Philippine General Hospital, University of the Philippines Manila.
Objective: Our study aimed to determine the clinical profile and pulmonary function of pediatric patients with Duchenne Muscular Dystrophy (DMD). We also characterized the stages of progression of the disease and determined their potential association with spirometry variables.
Methods: In this cross-sectional study, we used data obtained from a review of medical records of all pediatric patients (0-18 years old) with DMD seen in a multidisciplinary neuromuscular clinic of a tertiary government hospital from August 2018 until March 2020.
Nanoscale
January 2025
Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!