One-Pot Enzymatic Preparation of Oligonucleotides with an Expanded Genetic Alphabet via Controlled Pause and Restart of Primer Extension: Making Unnatural Out of Natural.

ACS Synth Biol

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.

Published: September 2023

AI Article Synopsis

  • Development of unnatural base pairs (UBPs), like dNaM-dTPT3, has expanded the genetic alphabet and enabled the creation of semisynthetic cells with six-letter genomes.
  • Conventional synthesis methods for oligonucleotides with UBPs often face limitations, such as the need for unstable materials and specialized equipment.
  • A new one-pot enzymatic method using Klenow fragment (exo) has been developed to efficiently produce UB-containing oligonucleotides, making the process simpler and more cost-effective for lab applications.

Article Abstract

The genetic alphabet of life has been dramatically expanded via the development of unnatural base pairs (UBPs) that work as efficiently as natural base pairs in the storage and retrieval of genetic information. Among the most predominant UBPs, dNaM-dTPT3 and its analogues have been successfully employed to build semisynthetic cells with a functional six-letter genome. With the rapidly growing applications of UBPs and , there is an ever-increasing demand for DNA oligonucleotides containing unnatural bases (UBs) at desired positions. Conventional solid-phase synthesis of oligonucleotides has intrinsic limitations and needs to use unstable unnatural phosphoramidites and a DNA synthesizer, so it does not meet the daily urgent requirement for a few UB-containing DNA oligonucleotides in the laboratory. In this work, we develop a one-pot enzymatic method for preparing dNaM- or dTPT3-containing DNA oligonucleotides via controlled pause and restart of primer extension mediated by Klenow fragment (exo). By systematic optimization of the reaction conditions, high efficiencies and product purities have been achieved. The universality of this method for preparing DNA oligonucleotides containing dNaM or dTPT3 in different sequence contexts is also demonstrated. This method allows convenient production of an arbitrary UB-containing DNA oligonucleotide in a single test tube with only two natural DNA oligonucleotides, stable nucleoside triphosphates, Klenow fragment (exo), and other common reagents in the laboratory, providing the lowest cost and the highest simplicity for the enzymatic preparation of UB-containing oligonucleotides. Clearly, this method has great potential to facilitate the and applications of the UBPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.3c00258DOI Listing

Publication Analysis

Top Keywords

dna oligonucleotides
20
one-pot enzymatic
8
enzymatic preparation
8
oligonucleotides
8
genetic alphabet
8
controlled pause
8
pause restart
8
restart primer
8
primer extension
8
base pairs
8

Similar Publications

Electrochemical capacitance-based aptasensor for HER2 detection.

Biomed Microdevices

January 2025

Department of Physics, Faculty of Philosophy, Science and Letter, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.

The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) protein is specifically related to tumor cell proliferation in breast cancers. Its presence in biological serum samples indicates presence or progression of cancer, becoming a promise biomarker. However, their detection needs a simple and high accuracy platform.

View Article and Find Full Text PDF

In this study, we explored the chemical modification of toll-like receptor 9 (TLR9) agonist DNA using a highly fluorescent thymine analogue, ThexT, focusing on its structural and photophysical characteristics. ThexT-labelled CpG oligonucleotides effectively demonstrated intracellular localisation within macrophage cell lines. Notably, immunostimulatory activity varied depending on the site of ThexT incorporation within the TLR9 agonist sequence.

View Article and Find Full Text PDF

Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Aptazyme-directed A-to-I RNA editing.

Methods Enzymol

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:

As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!