Controlled pesticide delivery systems offer many distinctive advantages over conventional pesticide formulations. In this work, degradable poly(-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels and multifunctional PDA@PNIPAM-TA nanocomposites were prepared in a high-gravity rotating packed bed reactor (RPB) for smart pesticide delivery and release. The as-prepared microgels and nanocomposites showed reversible temperature-dependent swelling/deswelling behavior and irreversible pH-induced degradation. A dynamic contact angle test suggested that the introduction of TA and PDA into the PNIPAM matrix could enhance foliar adhesion and deposition efficiency. The nanocomposites were further used for the encapsulation and delivery of imidacloprid (IMI) to protect it from rapid photolysis and improve its pest-control efficiency. Their thermoresponsive behavior as well as pesticide loading capacity could be tuned by tailoring the PNIPAM-TA shell thickness, which could be varied by the NIPAM amount. The release rate of IMI from the core/shell nanocomposites was positively correlated with environmental temperature and near-infrared (NIR) light, which was adaptive to the positive temperature-dependent toxicity correlation of IMI and the increasing trend of pests under high temperature. The cumulative release of IMI was 23.5% at 25 °C, while it was 81.2% at 40 °C after 24 h of incubation, and the release rate was greatly enhanced under NIR irradiation. The results indicated that the facile control of pesticide release could be realized by regulating environmental conditions. This work also provides an idea for using high-gravity technology to conveniently construct a smart, effective, and environmentally friendly pesticide delivery system for sustainable crop protection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c01515DOI Listing

Publication Analysis

Top Keywords

pesticide delivery
12
pda@pnipam-ta nanocomposites
8
pesticide release
8
release rate
8
pesticide
7
release
6
nanocomposites
5
degradable pda@pnipam-ta
4
nanocomposites temperature-
4
temperature- nir
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!