We describe a method for fragmenting, in-situ, surface-adsorbed and immobilized DNAs on polymethylmethacrylate(PMMA)-coated silicon substrates using microfluidic delivery of the cutting enzyme DNase I. Soft lithography is used to produce silicone elastomer (Sylgard 184) gratings which form microfluidic channels for delivery of the enzyme. Bovine serum albumin (BSA) is used to reduce DNase I adsorption to the walls of the microchannels and enable diffusion of the cutting enzyme to a distance of 10mm. Due to the DNAs being immobilized, the fragment order is maintained on the surface. Possible methods of preserving the order for application to sequencing are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482287 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250054 | PLOS |
ACS Biomater Sci Eng
January 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.
Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.
View Article and Find Full Text PDFTheranostics
January 2025
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment.
View Article and Find Full Text PDFSmart Med
December 2024
Shanghai Xuhui Central Hospital Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology) Institutes of Biomedical Sciences Fudan University Shanghai China.
Bioorthogonal chemistry, recognized as a highly efficient tool in chemical biology, has shown significant value in cancer treatment. The primary objective is to develop efficient delivery strategies to achieve enhanced bioorthogonal drug treatment for tumors. Here, Janus microparticles (JMs) loaded with cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) triggers are reported.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Nanomedicine is revolutionizing precision medicine, providing targeted, personalized treatment options. Lipid-based nanomedicines offer distinct benefits including high potency, targeted delivery, extended retention in the body, reduced toxicity, and lower required doses. These characteristics make lipid-based nanoparticles ideal for drug delivery in areas such as gene therapy, cancer treatment, and mRNA vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!