Purpose: We developed a 4-dimensional dynamic dose (4DDD) calculation model for proton pencil beam scanning (PBS). This model incorporates the spill start time for all energies and uses the remaining irradiated spot time model instead of irradiated spot time logs. This study aimed to validate the calculation accuracy of a log file-based 4DDD model by comparing it with dose measurements performed under free-breathing conditions, thereby serving as an alternative approach to the conventional log file-based system.
Methods: Three cubic verification plans were created using a heterogeneous block phantom; these plans were created using 10 phase 4D-CT datasets of the phantom. The CIRS dynamic platform was used to simulate motion with amplitudes of 2.5, 3.75, and 5.0 mm. These plans consisted of eight- and two-layered rescanning techniques. The lateral profiles were measured using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films at four starting phases, including three sinusoidal curves (periods of 3, 4, and 6 s) and a representative patient curve during actual treatment. 4DDDs were calculated using in-house scripting that assigned a time stamp to each spot and performed dose accumulation using deformable image registration. Furthermore, to evaluate the impact of parameter selection on our 4DDD model calculations, simulations were performed assuming a ±10% change in irradiation time stamp (0.8 ± 0.08 s) and spot scan speed. We evaluated the 2D gamma index and the absolute point doses between the calculated values and the measurements.
Results: The 2D-array measurements revealed that the gamma scores for the static plans (no motion) and 4DDD plans exceeded 97.5% and 93.9% at 3%/3 mm, respectively. The average gamma score of the 4DDD plans was at least 96.1%. When using EBT3 films, the gamma scores of the 4DDD model exceeded 92.4% and 98.7% at 2%/2 mm and 3%/3 mm, respectively. Regarding the 4DDD point dose differences, more than 95% of the dose regions exhibited discrepancies within ±5.0% for 97.7% of the total points across all plans. The spot time assignment accuracy of our 4DDD model was acceptable even with ±10% sensitivity. However, the accuracy of the scan speed, when varied within ±10% sensitivity, was not acceptable (minimum gamma scores of 82.6% and maximum dose difference of 12.9%).
Conclusions: Our 4DDD calculations under free-breathing conditions using amplitudes of less than 5.0 mm were in good agreement with the measurements regardless of the starting phases, breathing curve patterns (between 3 and 6 s periods), and varying numbers of layered rescanning. The proposed system allows us to evaluate actual irradiated doses in various breathing periods, amplitudes, and starting phases, even on PBS machines without the ability to record spot logs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.16725 | DOI Listing |
Cureus
January 2025
Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, JPN.
Introduction Implant technology for total hip arthroplasty (THA) was developed to improve hip function and patient satisfaction. Actis (DePuy Synthes, Warsaw, IN, USA) is a short fit-and-fill titanium stem, with a medial-collared and triple-taper (MCTT) geometry, that is fully coated with hydroxyapatite (HA). We evaluated the radiographic and clinical outcomes of the Actis Total Hip System during a mean follow-up of five years.
View Article and Find Full Text PDFNat Commun
January 2025
School of Engineering Sciences, KTH Royal Institute of Technology, Applied Physics, AlbaNova, SE-106 91, Stockholm, Sweden.
Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings.
View Article and Find Full Text PDFTher Adv Ophthalmol
January 2025
Department of Experimental Medicine, Ophthalmology Unit, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy.
Diabetic retinopathy and retinal vein occlusion represent two prevalent vision-threatening retinal diseases. Retinal laser therapy still plays an important role in treating these conditions, but its successful administration often requires referral to specialized centers and retina experts. It is, therefore, essential to develop a new treatment methodology that enables patients to benefit from the expertise of specialists from reference centers.
View Article and Find Full Text PDFACS Omega
January 2025
Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia.
Water is an essential part of everyday life, and similarly, numerous industries depend on it. Regular water analysis is needed for both home use and in more specific fields, e.g.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
This study aims to review and analyze the impact of light-emitting diode (LED) photobiomodulation (PBM) therapy on orthodontic tooth movement. This non-invasive technique is proposed to reduce time-related side effects, such as white spot lesions, dental caries, and root resorption. Five studies were included in the review, comprising two animal studies (ages 10 and 12 weeks) and three human studies (ages ranging from 15 to 17 years).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!