Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Black carbon (BC) has a significant impact on air quality, climate change, and human health. Studies on BC from vessel exhaust have been focused on in recent years. To realize the contribution of BC from vessels to ambient air quality, 28 months of BC variation were observed from February 2019 to May 2022, including 3 fishing moratoriums and 2 normal periods. The results showed that the average daily concentration of BC in the fishing moratorium was significantly lower than that in the normal period. The difference proportion of the BC concentration between 370 and 880 nm was calculated over the whole period. As a result, the mean difference value in the fishing moratorium from February to May was 0.06 ± 0.07, and the normal period was -0.02 ± 0.05. The aethalometer model indicated that BC was greatly affected by fossil fuel combustion in the normal period. The effect of vessel emissions on regional BC concentrations was considerable. In addition, 16 PAHs and 21 elements in PM emitted from 24 vessels of different types were sampled and analyzed in Dianshan Lake and the Taipu River. EC accounted for the highest proportion (23.64%) in the sample of small trawlers compared to the emissions from cargo ships with large tonnages. The component profiles of vessel exhaust showed that Zn, As, phenanthrene (Phe), anthracene (Ant), fluoranthene (Fla), and pyrene (Pyr) were the dominant species, although some of these species were mainly recognized as characteristic factors of coal combustion. To improve the accuracy of identifying the vessel source, the diagnostic ratios of Ant/(Ant + Phe), BaA/(BaA + Chr), Phe/Ant, and BaA/Chr were provided, and they exhibited the obvious characteristics of fuel combustion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-29667-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!