Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Automatic seizure detection and prediction using clinical Electroencephalograms (EEGs) are challenging tasks due to factors such as low Signal-to-Noise Ratios (SNRs), high variance in epileptic seizures among patients, and limited clinical data constraints. To overcome these challenges, this paper presents two approaches for EEG signal classification. One of these approaches depends on Machine Learning (ML) tools. The used features are different types of entropy, higher-order statistics, and sub-band energies in the Hilbert Marginal Spectrum (HMS) domain. The classification is performed using Support Vector Machine (SVM), Logistic Regression (LR), and K-Nearest Neighbor (KNN) classifiers. Both seizure detection and prediction scenarios are considered. The second approach depends on spectrograms of EEG signal segments and a Convolutional Neural Network (CNN)-based residual learning model. We use 10000 spectrogram images for each class. In this approach, it is possible to perform both seizure detection and prediction in addition to a 3-state classification scenario. Both approaches are evaluated on the Children's Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset, which contains 24 EEG recordings for 6 males and 18 females. The results obtained for the HMS-based model showed an accuracy of 100%. The CNN-based model achieved accuracies of 97.66%, 95.59%, and 94.51% for Seizure (S) versus Pre-Seizure (PS), Non-Seizure (NS) versus S, and NS versus S versus PS classes, respectively. These results demonstrate that the proposed approaches can be effectively used for seizure detection and prediction. They outperform the state-of-the-art techniques for automatic seizure detection and prediction. Block diagram of proposed epileptic seizure detection method using HMS with different classifiers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-023-02843-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!