Background: Urban agglomerates play a crucial role in reaching global climate objectives. Many cities have committed to reducing their greenhouse gas emissions, but current emission trends remain unverifiable. Atmospheric monitoring of greenhouse gases offers an independent and transparent strategy to measure urban emissions. However, careful design of the monitoring network is crucial to be able to monitor the most important sectors as well as adjust to rapidly changing urban landscapes.
Results: Our study of Paris and Munich demonstrates how climate action plans, carbon emission inventories, and urban development plans can help design optimal atmospheric monitoring networks. We show that these two European cities display widely different trajectories in space and time, reflecting different emission reduction strategies and constraints due to administrative boundaries. The projected carbon emissions rely on future actions, hence uncertain, and we demonstrate how emission reductions vary significantly at the sub-city level.
Conclusions: We conclude that quantified individual cities' climate actions are essential to construct more robust emissions trajectories at the city scale. Also, harmonization and compatibility of plans from various cities are necessary to make inter-comparisons of city climate targets possible. Furthermore, dense atmospheric networks extending beyond the city limits are needed to track emission trends over the coming decades.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481584 | PMC |
http://dx.doi.org/10.1186/s13021-023-00236-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!