This study aimed to determine the role of IFN-1 gene signatures in SLE and their association with Sjögren syndrome (SS). Publicly available data from the Gene Expression Omnibus database were used to construct the models. The random forest tree model was used to screen key IFN-1 gene signatures, and consensus clustering algorithms were used for unsupervised cluster analysis of these signatures. CIBERSORT and gene set variation analyses were used to evaluate the relative immune cell infiltration and enriched molecular pathways of the samples, respectively. Weighted gene co-expression network analysis was used to identify the co-expression modules and hub genes. Finally, univariate and multivariate logistic regression models were used to evaluate differences in clinical and laboratory characteristics between the different groups. The role of IFN-1 gene signatures in SLE was comprehensively assessed, which revealed an IFN-1 gene signature including six genes that could easily distinguish SLE patients and healthy individuals and identified two distinct IFN-1 subtypes exhibiting significant differences in clinical characteristics, immune microenvironment, and biological functional pathways. The SLE disease activity index, lower lymphocyte count, nucleotide oligomerization domain (NOD)-like receptor signaling pathway, and dendritic cell activation were strongly correlated with the IFN-1 gene signatures. In addition, we found that IFN-1 gene signatures in SLE may be an important susceptibility factor for SS, and the NOD-like receptor signaling pathway was identified as a common pathway. This study provides a comprehensive evaluation of the IFN-1 gene signatures, which may provide a new direction for the understanding of SLE and SS and help in the selection of optimal strategies for personalized immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10238-023-01154-6DOI Listing

Publication Analysis

Top Keywords

gene signatures
28
ifn-1 gene
28
signatures sle
12
gene
11
signatures
8
sjögren syndrome
8
ifn-1
8
role ifn-1
8
differences clinical
8
nod-like receptor
8

Similar Publications

More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance.

View Article and Find Full Text PDF

Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM.

View Article and Find Full Text PDF

Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) is a powerful, high-throughput technique for assessing chromatin accessibility and understanding epigenomic regulation. Neutrophils, as a crucial leukocyte type in immune responses, undergo substantial chromatin architectural changes during differentiation and activation, which significantly impact the gene expression necessary for their functions. ATAC-seq has been instrumental in uncovering key transcription factors in neutrophil maturation, revealing pathogen-specific epigenomic signatures, and identifying therapeutic targets for autoimmune diseases.

View Article and Find Full Text PDF

Genomic and Methylomic Signatures Associated With the Maintenance of Genome Stability and Adaptive Evolution in Two Closely Allied Wolf Spiders.

Mol Ecol Resour

January 2025

Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China.

Pardosa spiders, belonging to the wolf spider family Lycosidae, play a vital role in maintaining the health of forest and agricultural ecosystems due to their function in pest control. This study presents chromosome-level genome assemblies for two allied Pardosa species, P. laura and P.

View Article and Find Full Text PDF

Single-nucleotide-resolution genomic maps of O6-methylguanine from the glioblastoma drug temozolomide.

Nucleic Acids Res

January 2025

Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.

Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!