Rational design of Abhisin-like peptides enables generation of potent antimicrobial activity against pathogens.

Appl Microbiol Biotechnol

Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.

Published: November 2023

Infections caused by pathogens can be a significant challenge in wound healing, particularly when antimicrobial resistance is a factor. This can pose a serious threat to human health and well-being. In this scenario, it is imperative to explore novel antimicrobial agents to fight against multi-drug resistant (MDR) pathogenic bacteria. This study employed rational design strategies, including truncation, amino acid replacement, and heterozygosity, to obtain seven α-helical, cationic, and engineered peptides based on the original template of Abhisin. Among the analogs of Abhisin, AB7 displayed broad-spectrum and potent antimicrobial activity, superior targeting of membranes and DNA, and the ability to disrupt biofilms and anti-endotoxins in vitro. Additionally, we evaluated the anti-infection ability of AB7 using a murine skin wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) and found that AB7 displayed negligible toxicity both in vitro and in vivo. Furthermore, AB7 exhibited desirable therapeutic efficacy by reducing bacterial burden and pro-inflammatory mediators, modulating cytokines, promoting wound healing, and enhancing angiogenesis. These results highlight the potential of AB7 as a promising candidate for a new antibiotic. KEY POINTS: • A α-helical, cationic, and engineered peptide AB7 was obtained based on Abhisin. • AB7 exhibited potent antimicrobial activity and multiple bactericidal actions. • AB7 effectively treated infected skin wounds in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-023-12748-1DOI Listing

Publication Analysis

Top Keywords

potent antimicrobial
12
antimicrobial activity
12
rational design
8
wound healing
8
α-helical cationic
8
cationic engineered
8
ab7
8
ab7 displayed
8
ab7 exhibited
8
• ab7
8

Similar Publications

Controlling microbial pollutants is a significant public health concern as they cause several chronic microbial infections and illnesses. In recent years, essential oils (EOs) have become intriguing alternatives for synthetic antimicrobials due to their biodegradability, natural source extraction, and strong antibacterial properties. The bactericidal properties of alginate containing lemon essential oil were examined in this investigation.

View Article and Find Full Text PDF

Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice.

Nat Commun

January 2025

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.

View Article and Find Full Text PDF

Background: Dermatomyositis is a chronic autoimmune disease with distinctive cutaneous eruptions and muscle weakness, and the pathophysiology is characterised by type I interferon (IFN) dysregulation. This study aims to assess the efficacy, safety, and target engagement of dazukibart, a potent, selective, humanised IgG1 neutralising monoclonal antibody directed against IFNβ, in adults with moderate-to-severe dermatomyositis.

Methods: This multicentre, double-blind, randomised, placebo-controlled, phase 2 trial was conducted at 25 university-based hospitals and outpatient sites in Germany, Hungary, Poland, Spain, and the USA.

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!