Coarse-grained (CG) simulation models of condensed-phase systems can be derived with well-established methods that perform coarse-graining in space and provide an effective Hamiltonian with which some of the structural and thermodynamic properties of the underlying fine-grained (FG) reference system can be represented. Coarse-graining in time potentially provides CG models that furthermore represent dynamic properties. However, systematic efforts in this direction have so far been limited, especially for moderately coarse-grained, chemistry-specific systems with complicated conservative interactions. With the aim of representing structural, thermodynamic, and dynamic properties in CG simulations of multi-component molecular systems, we investigated a recently introduced method in which the force on a CG particle originates from conservative interactions with surrounding particles and non-Markovian dissipative interactions, the latter introduced by means of a colored-noise thermostat. We examined two different methods to derive isotropic memory kernels required for integrating the corresponding generalized Langevin equation (GLE) of motion, based on the orthogonal dynamics of the FG forces and on an iterative optimization scheme. As a proof of concept, we coarse-grain single-component molecular liquids (cyclohexane, tetrachloromethane) and ideal and non-ideal binary mixtures of cyclohexane/tetrachloromethane and ethanol/tetrachloromethane, respectively. We find that for all systems, the FG single particle velocity auto-correlation functions and, consequently, both the short time and long time diffusion coefficients can be quantitatively reproduced with the CG-GLE models. We furthermore demonstrate that the present GLE-approach leads to an improved description of the rate with which the spatial correlations decay, which is artificially accelerated in the absence of dissipation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0163097 | DOI Listing |
Langmuir
January 2025
Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Coacervation is generally treated as a liquid-liquid phase separation process and is controlled mainly by thermodynamics. However, kinetics could make a dominant contribution, especially in systems containing multiple interactions. In this work, using peptides of (XXLY)SSSGSS to tune the charge density and the degree of hydrophobicity, as well as to introduce secondary structures, we evaluated the effect of kinetics on biphasic coacervates formed by peptides with single-stranded oligonucleotides and quaternized dextran at varying pH values.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.
In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.
View Article and Find Full Text PDFHardwareX
March 2025
Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
High-performance liquid chromatography (HPLC) is an invaluable technique that has been used for many decades for the separation of various molecules. The reproducible collection of eluates from these systems has been significantly improved via its automation by fraction collection systems. Current commercially available fraction collectors are not easily customizable, incompatible with other platforms, and come with a large cost barrier making them inaccessible to many researchers.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
It is widely believed that the aggregation of amyloid β (Aβ) peptides into soluble oligomers is the root cause behind Alzheimer's disease. In this study, we have performed room-temperature molecular dynamics (MD) simulations of aggregated Aβ oligomers of different sizes (pentamer (O(5)), decamer (O(10)), and hexadecamer (O(16))) in binary aqueous solutions containing 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF]) ionic liquid (IL). Investigations have been carried out to obtain a microscopic understanding of the effects of the IL on the dynamic environment around the exterior surfaces and within the confined nanocores of the oligomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!