The influence of fluctuating charges or charge flow on the dynamic linear response properties of isolated molecules from the TS42 database is evaluated, with particular emphasis on dipole polarizability and C6 dispersion coefficients. Two new descriptors are defined to quantify the charge-flow contribution to response properties, making use of the recoupled dipole polarizability to separate isotropic and anisotropic components. Molecular polarizabilities are calculated using the "frequency-dependent atom-condensed Kohn-Sham density functional theory approximated to second order," i.e., the ACKS2ω model. With ACKS2ω, the charge-flow contribution can be constructed in two conceptually distinct ways that appear to yield compatible results. The charge-flow contribution is significantly affected by molecular geometry and the presence of polarizable bonds, in line with previous studies. We show that the charge-flow contribution qualitatively reproduces the polarizability anisotropy. The contribution to the anisotropic C6 coefficients is less pronounced but cannot be neglected. The effect of fluctuating charges is only negligible for small molecules with at most one non-hydrogen atom. They become important and sometimes dominant for larger molecules or when highly polarizable bonds are present, such as conjugated, double, or triple bonds. Charge flow contributions cannot be explained in terms of individual atomic properties because they are affected by non-local features such as chemical bonding and geometry. Therefore, polarizable force fields and dispersion models can benefit from the explicit modeling of charge flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0163842 | DOI Listing |
Mater Horiz
January 2025
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.
View Article and Find Full Text PDFJ Phys Chem A
May 2024
Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark.
The molecular dipole polarizability can be decomposed into components corresponding to the charge flow between atoms and changes in atomic dipole moments. Such decompositions are recognized to depend on how atoms are defined within a molecule, as, for example, by Hirshfeld, iterative Stockholder, or quantum topology partitioning of the electron density. For some of these, however, there are significant differences between the numerical results obtained by analytical response methods and finite field calculations.
View Article and Find Full Text PDFInorg Chem
May 2024
College of Materials Science and Engineering, Fuzhou University, New Campus,Minhou, Fujian Province 350108, China.
Wholly distinct from conjugated polymers which are featured by generic charge transfer capability stemming from a conjugated molecular structure, solid nonconjugated polymers mediated charge transport has long been deemed as theoretically impossible because of the deficiency of π electrons along the molecular skeleton, thereby retarding their widespread applications in solar energy conversion. Herein, we first conceptually unveil that intact encapsulation of metal oxides (e.g.
View Article and Find Full Text PDFChem Sci
February 2024
College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China
The core factors dictating the photocatalysis efficiency are predominantly centered on controllable modulation of anisotropic spatial charge transfer/separation and regulating vectorial charge transport pathways. Nonetheless, the sluggish charge transport kinetics and incapacity of precisely tuning interfacial charge flow at the nanoscale level are still the primary dilemma. Herein, we conceptually demonstrate the elaborate design of a cascade charge transport chain over transition metal chalcogenide-insulating polymer-cocatalyst (TIC) photosystems a progressive self-assembly strategy.
View Article and Find Full Text PDFJ Chem Phys
September 2023
Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, B-9052 Ghent, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!