Enhanced Bioactivity of Enzyme/MOF Biocomposite via Host Framework Engineering.

J Am Chem Soc

School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia.

Published: September 2023

This study reports the successful development of a sustainable synthesis protocol for a phase-pure metal azolate framework (MAF-6) and its application in enzyme immobilization. An esterase@MAF-6 biocomposite was synthesized, and its catalytic performance was compared with that of esterase@ZIF-8 and esterase@ZIF-90 in transesterification reactions. Esterase@MAF-6, with its large pore aperture, showed superior enzymatic performance compared to esterase@ZIF-8 and esterase@ZIF-90 in catalyzing transesterification reactions using both -propanol and benzyl alcohol as reactants. The hydrophobic nature of the MAF-6 platform was shown to activate the immobilized esterase into its open-lid conformation, which exhibited a 1.5- and 4-times enzymatic activity as compared to free esterase in catalyzing transesterification reaction using -propanol and benzyl alcohol, respectively. The present work offers insights into the potential of MAF-6 as a promising matrix for enzyme immobilization and highlights the need to explore MOF matrices with expanded pore apertures to broaden their practical applications in biocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c05488DOI Listing

Publication Analysis

Top Keywords

enzyme immobilization
8
performance compared
8
compared esterase@zif-8
8
esterase@zif-8 esterase@zif-90
8
transesterification reactions
8
catalyzing transesterification
8
-propanol benzyl
8
benzyl alcohol
8
enhanced bioactivity
4
bioactivity enzyme/mof
4

Similar Publications

Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

Talanta

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China. Electronic address:

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment.

View Article and Find Full Text PDF

Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5.

Foods

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.

Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.

View Article and Find Full Text PDF

During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes.

View Article and Find Full Text PDF

Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.

View Article and Find Full Text PDF

Cellulose tosylate (MCC-Tos) is a key derivative for surface modification and a crucial precursor for cellulose compatibilization in click reactions, enabling its functionalization for advanced applications. Replacing tosyl groups with alkyne groups broadens cellulose's potential in biocompatible reactions, such as thiol-yne click chemistry and protein/enzyme immobilization. To achieve this, we optimized the heterogeneous synthesis of MCC-Tos using a Doehlert matrix statistical design, evaluating the influence and interaction of the reaction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!