A gold nanoparticle (AuNP) based immunochromatographic assay strip is a valuable tool for monitoring chemicals in foods. However, the sensitive ICA strip for SBT is rarely reported due to the fact that monoclonal antibodies (mAbs) against SBT with high affinity are commercially unavailable. Herein, a monoclonal antibody against SBT was prepared through a designed hapten with a carboxyl end-capped space arm. The obtained mAb showed high affinity for SBT and -desmethylsibutramine, a metabolite of SBT. Furthermore, a series of core-shell NPs, polydopamine (PDA) coated AuNPs (PDA/AuNPs) with controlled shell thickness and packing density were synthesized. The obtained PDA/AuNP-mAb conjugate demonstrated high tolerance to salt and good stability in a wide pH range, which is beneficial for improving the matrix interference common in ICA. As a result, PDA/AuNP-based ICA could quantify SBT in the range of 3.39-69.60 ng mL with a limit of detection (LOD) of 0.98 ng mL. This novel ICA improved the sensitivity of the traditional AuNP-based ICA by nearly 12 times. Method validation was conducted with spiked samples of slimming food and human serum and compared with HPLC-MS/MS. Consistent results indicated that high sensitivity, accuracy, and reliability of the PDA/AuNP-based ICA approach were achieved. To the best of our knowledge, this study reported the most sensitive immunoassay for SBT thus far.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2an02094g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!