Background: Septic myocardial injury is one of the most life-threatening organ dysfunction. The γ-secretase-based approaches have been developed as potential strategies for diverse diseases management. Unfortunately, the role of γ-secretase inhibitor in septic myocardial injury is unclarified. The present study aims to investigate the effect of γ-secretase inhibitor in septic myocardial injury and reveal its mechanism.

Methods: The mouse model of septic myocardial injury was established by intraperitoneally injection of lipopolysaccharide (LPS), and γ-secretase inhibitor MW167 was applied in this model. RNA-sequencing analysis and further bioinformatics analyses were used to screen differential expressed genes (DEGs) and potentially enriched pathways between LPS and LPS + MW167 mice. Pathological examination was performed using haematoxylin and eosin (HE) staining. SD-1029 was used to block JAK2/STAT3 signaling in H9C2 cells and western blot analysis quantified JAK2/STAT3-related proteins.

Results: LPS induced myocardial injury accompanied with significant inflammatory infiltration and more apoptotic cells. Transcriptome sequencing screened 36 DEGs and bioinformatics identified JAK2/STAT3 signaling pathway was significantly enriched. Further in vitro experiments showed that γ-secretase inhibitor MW167 activated JAK2/STAT3 pathway. Additionally, MW167 restored cell viability, decreased myocardial injury markers including cardiac troponin I (cTnI) and brain natriuretic peptide (BNP), inhibited pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) and reduced nitric oxide (NO), cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) release. Application of SD-1029 reversely deteriorated LPS-induced myocardial injury and inflammatory response in γ-secretase inhibitor-treated myocardial cells.

Conclusion: The results demonstrate that γ-secretase inhibitor alleviates septic myocardial injury via activating JAK2/STAT3 signaling, and provide novel therapeutic direction for septic myocardial injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23962DOI Listing

Publication Analysis

Top Keywords

myocardial injury
40
γ-secretase inhibitor
24
septic myocardial
24
jak2/stat3 signaling
16
myocardial
11
injury
10
inhibitor alleviates
8
inhibitor septic
8
inhibitor mw167
8
nitric oxide
8

Similar Publications

Introduction: To improve surgical quality and safety, health systems must prioritise equitable care for surgical patients. Racialised patients experience worse postoperative outcomes when compared with non-racialised surgical patients in settler colonial nation-states. Identifying preventable adverse outcomes for equity-deserving patient populations is an important starting point to begin to address these gaps in care.

View Article and Find Full Text PDF

The influence of microplastics on hypertension-associated cardiovascular injury via the modulation of gut microbiota.

Environ Pollut

January 2025

Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China. Electronic address:

Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Mitigation of ischemia/reperfusion injury via selenium nanoparticles: Suppression of STAT1 to inhibit cardiomyocyte oxidative stress and inflammation.

Biomaterials

January 2025

Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China; College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, People's Republic of China. Electronic address:

Ischemia/reperfusion injury (I/RI) following myocardial infarction, a leading cause of global morbidity and mortality, is characterized by detrimental oxidative stress and inflammation. In response, we proposed an I/RI alleviation strategy using the intravenous injection of spherical selenium nanoparticles (SeNPs) synthesized by a template method. Single-cell sequencing revealed these proposed SeNPs exhibited exceptional antioxidant and anti-inflammatory properties, disrupting the STAT1-ROS cycle, therefore preserving mitochondrial respiration and inhibiting caspase-mediated cardiomyocyte apoptosis.

View Article and Find Full Text PDF

Shuxuening injection improves myocardial injury after myocardial infarction by regulating macrophage polarization via the TLR4/NF-κB and PI3K/Akt signaling pathways.

Phytomedicine

January 2025

Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China. Electronic address:

Background: Macrophage activation and polarization play pivotal roles in the inflammatory response and myocardial injury associated with myocardial infarction (MI). Modulating macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype is a promising therapeutic approach for MI. Shuxuening injection (SXNI) is extensively utilized in clinical settings for MI treatment and has demonstrated therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!