Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2023.09.001 | DOI Listing |
Nicotine Tob Res
January 2025
Department of Population Health Sciences, University of Leicester, Leicester, UK.
Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.
Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Anemia is a potentially life-threatening blood disorder caused by an insufficient erythroblast volume in the circulatory system. Self-renewal failure of erythroblast progenitors is one of the key pathological factors leading to erythroblast deficiency. However, there are currently no effective drugs that selectively target this process.
View Article and Find Full Text PDFJ Community Genet
January 2025
Laboratório de Hormônios e Genética Molecular-LIM42, Disc de Endocrinologia do Hospital das Clínicas, da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
Neonatal screening is a critical public health initiative introduced worldwide to detect severe congenital disorders early in life. This study provides an updated overview of public neonatal screening in Brazil, highlighting the transition from initial pilot projects to a robust national program. Through the analysis of recent data up to 2023, we discuss the coverage and regional efficiencies of the program.
View Article and Find Full Text PDFPaediatr Drugs
January 2025
Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
Oral ganaxolone (ZTALMY), a synthetic analogue of the endogenous neuroactive steroid allopregnanolone, acts as a positive allosteric modulator of synaptic and extra-synaptic γ-aminobutyric acid (GABA) type A receptor function in the CNS. In the EU and the UK, it is approved for the adjunctive treatment of epileptic seizures associated with cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) in patients aged 2-17 years. In a multinational phase III study (Marigold), 17 weeks' therapy with adjunctive ganaxolone, administered orally three times daily with food, significantly reduced 28-day major motor seizure frequency from baseline versus placebo in patients aged 2-19 years with CDD-associated refractory epilepsy.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!