Schistosomus reflexus (SR) is one of the most common congenital anomalies found in cases of cattle dystocia; this disorder occurs mostly in cattle. Congenital anomalies such as SR are caused by various genetic and environmental factors, but no specific cause has been elucidated for SR. This study reports a case of SR in a Holstein dairy cattle fetus with congenital anomalies in Korea. Grossly, a distinct spine curvature was observed between the thoracic and lumbar vertebrae, accompanied by a consequential malformation from the sacrum to the occipital bone. Furthermore, the thoracic and abdominal organs were exposed. In computed tomography (CT) images, mild and severe kyphoscoliosis was observed in T1~11 and L1~6, respectively. Additionally, vertebral dysplasia was observed in S1~5 and Cd 1~5. To pinpoint the causal genes and mutations, we leveraged a custom 50K Hanwoo SNP-Chip and the Online Mendelian Inheritance in Animals (OMIA) database. As a result, we identified a nonsense mutation in apoptotic protease activating factor 1 () within HH1 that was associated with a decrease in conception rate and an increase in abortion in Holstein dairy cattle. The genotype of the SR case was A/A, and most of the 1,142 normal Holstein dairy cattle tested as a control group had the genotype G/G. In addition, the A/A genotype did not exist in the control group. Based on the pathological, genetic, and radiological findings, the congenital abnormalities observed were diagnosed as SR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475524PMC
http://dx.doi.org/10.3389/fvets.2023.1238544DOI Listing

Publication Analysis

Top Keywords

holstein dairy
16
dairy cattle
16
congenital anomalies
12
schistosomus reflexus
8
cattle fetus
8
control group
8
cattle
6
case
4
case report
4
report investigation
4

Similar Publications

Forage sources in total mixed rations on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves.

Sci Rep

December 2024

Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.

The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.

View Article and Find Full Text PDF

Maternal Transmission of Rotavirus to Calves and Comparison of Colostrum and Fecal Microbiota in Holstein and Hanwoo Cattle.

Vet Sci

November 2024

Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea.

This study aimed to evaluate rotavirus transmission to calves and analyze microbial communities in cow milk and neonatal calf feces within dairy and beef cattle. A total of 20 cattle, Hanwoo ( = 10), and Holstein ( = 10) were allotted for the study, with each breed comprising five cows and five calves. Colostrum samples were obtained from the dam, while feces were obtained from both the dam and calf.

View Article and Find Full Text PDF

Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia.

Biol Direct

December 2024

Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.

Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.

View Article and Find Full Text PDF

Prediction of ketosis using radial basis function neural network in dairy cattle farming.

Prev Vet Med

December 2024

Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow 30-059, Poland. Electronic address:

The purpose of the paper was to apply an Artificial Neural Networks with Radial Basis Function to develop an application model for diagnosing a subclinical ketosis type I and II in dairy cattle. While building the neural network model, applied methodology was compatible to the procedures used in Data Mining processes. The data set was created based on the composition of milk samples of 1520 Polish Holstein-Friesian cows.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effects of supplementing an essential oil blend (0.16 g/kg DM of carvacrol, eugenol, thymol, and capsaicin) and monensin (17.6 mg/kg DM TMR) on lactation performance, feeding behavior, and rumen fermentation of high-producing dairy cows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!