Background: FAS-associated death structural domain (FADD) proteins are important proteins that regulate apoptosis and are also involved in many nonapoptotic pathways in tumors. However, how dysregulated FADD affects the development of lung adenocarcinoma (LUAD) remains unknown.
Method: Transcriptome profiles and corresponding clinical information of LUAD patients were convened from different databases, and the results were validated by qRT-PCR and cell counting kit-8 using LUAD cell lines. Potential associations between FADD and tumor malignancy, the immune microenvironment, genomic stability, and treatment sensitivity in LUAD patients were revealed by systematic bioinformatics analysis.
Results: FADD was significantly overexpressed in LUAD, and patients with higher expression levels of FADD had a worse prognosis and more advanced tumor stage. Functional analysis revealed that elevated expression of FADD was associated with cell cycle dysregulation, angiogenesis, and metabolic disturbances. In addition, overexpression of FADD was associated with a higher infiltration of suppressive immune cells. From a single-cell perspective, cells with lower FADD expression are more active in immune-related pathways. FADD was associated with more genomic mutations, especially TP53. Patients with high FADD expression are more likely to benefit from conventional chemotherapy, while those with low FADD expression are more suitable for immunotherapy.
Conclusions: Upregulated FADD is associated with worse prognosis, immune exhaustion, and tumor malignancy in LUAD patients. In addition, FADD can be an efficient indicator for assessing sensitivity to chemotherapy and immunotherapy. Therefore, FADD has the potential to serve as a new target for precision medicine and targeted therapy for LUAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476093 | PMC |
http://dx.doi.org/10.3389/fonc.2023.1228889 | DOI Listing |
FEBS J
January 2025
Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China.
TNFAIP3-interacting protein 1 (TNIP1; also known as ABIN-1) is a ubiquitin-binding protein that suppresses death-receptor- or Toll-like receptor-mediated apoptosis and necroptosis; however, it remains unclear whether ABIN-1 is capable of regulating pyroptosis. In the present study, we found that, in mouse embryonic fibroblasts and macrophages, ABIN-1 deficiency sensitized cells to poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol-induced pyroptosis besides apoptosis and necroptosis. The sensitizing effect of ABIN-1 deficiency on pyroptosis depended on caspase-8 and its adaptor molecule FAS-associated death domain protein.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
Department of Urology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China.
Background: Speckle-type POZ protein (SPOP), FAS-associated protein with death domain (FADD), and nuclear transcription factor-κB (NF-κB) have been shown to be associated with the development of prostate cancer (PCa). FADD has been shown to activate the NF-κB pathway to promote tumorigenesis, while SPOP has been shown to enhance the breakdown of FADD and inhibit the function of the NF-κB signaling pathway in non-small cell lung cancer. The existence of this mechanism has not yet been confirmed in PCa.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of ENT, Medical University, 1000 Sofia, Bulgaria.
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma.
View Article and Find Full Text PDFFish Shellfish Immunol
February 2025
Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China. Electronic address:
Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!