Similar Publications

The small flowers of Myosotis scorpioides are pollinated by various groups of insects feeding on their nectar accumulating at the base of the corolla tube. To date, only few studies have focused on the anatomy and ultrastructure of nectaries in plants from the family Boraginaceae. The aim of this study was to analyse the structure of the M.

View Article and Find Full Text PDF

Thermal preconditioning of membrane stress to control the shapes of ultrathin crystals.

Soft Matter

September 2024

Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.

We employ the phospholipid bilayer membranes of giant unilamellar vesicles as a free-standing environment for the growth of membrane-integrated ultrathin phospholipid crystals possessing a variety of shapes with 6-fold symmetry. Crystal growth within vesicle membranes, where more elaborate shapes grow on larger vesicles is dominated by the bending energy of the membrane itself, creating a means to manipulate crystal morphology. Here we demonstrate how cooling rate preconditions the membrane tension before nucleation, in turn regulating nucleation and growth, and directing the morphology of crystals by the time they are large enough to be visualized.

View Article and Find Full Text PDF

In this work, a micron-sized flower-like metal-organic frameworks (MOFs)-based boronate-affinity sandwich-type immunoassay was fabricated for the dual-mode glycoprotein assay. For proof of concept, the flower-like MOFs were synthesized from transition Cu nodes and tetrakis (4-carboxyphenyl) porphyrin (TCPP) ligands by spontaneous standing assembly. In addition, the specificity toward glycoprotein involved the antigen recognition as well as covalent bonding via the boronate-glycan affinity, and the immediate signal responses were initiated by textural decomposition of the flower-like MOFs.

View Article and Find Full Text PDF

Pollen morphology and nutlet structures of some Prunella L. taxa were examined in detail by light microscopy (LM) and scanning electron (SEM) microscopy. Pollen grains of Prunella vary in size from small to large (Polar axis (P) = 22.

View Article and Find Full Text PDF

A number of natural fibers are being proposed for use in composite materials, especially those extracted from local plants, especially those able to grow spontaneously as they are cost-efficient and have unexplored potential. Sansevieria cylindrica, within the Asparagaceae (previously Agavacae) family, has recently been considered for application in polymer and rubber matrix composites. However, its characterization and even the sorting out of technical fiber from the stem remains scarce, with little available data, as is often the case when the fabrication of textiles is not involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!