Background: Virus infection can cause the changes of lncRNA expression levels to regulate the interaction between virus and host, but the relationship between BHV-1 infection and lncRNA has not been reported.
Methods: In this study, in order to reveal the molecular mechanism of RNA in BoHV-1 infection, the Madin-Darby bovine kidney (MDBK) cells were infected with BoHV-1, transcriptome sequencing were performed by next-generation sequencing at 18 h or 24 h or 33 h of viral infection and then based on the competitive endogenous RNA (ceRNA) theory, lncRNA-miRNA-mRNA networks were constructed using these high-throughput sequencing data. The network analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation and exploration of ncRNA ceRNAs in BoHV-1 infection.
Results: The results showed that 48 lncRNAs, 123 mRNAs and 20 miRNAs as differentially expressed genes, and the mitogen activated protein kinase (MAPK) pathway and calcium signaling pathway were significantly enriched in the ceRNA network. Some differentially expressed lncRNA genes were randomly selected for verification by RT-qPCR, and the results showed that their expression trend was consistent with the results of transcriptome sequencing data.
Conclusion: This study revealed that BoHV-1 infection can affect the expression of RNAs in MDBK cells and the regulation of ceRNA network to carry out corresponding biological functions in the host, but further experimental studies are still necessary to prove the hub genes function in ceRNA network and the molecular mechanism in BoHV-1 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476657 | PMC |
http://dx.doi.org/10.2147/IDR.S411034 | DOI Listing |
Microbiol Spectr
January 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
Unlabelled: Bovine herpesvirus (BoHV) infection poses a significant threat to the healthy development of the cattle industry. BoHV-1 primarily causes infectious bovine rhinotracheitis, while BoHV-5 is associated with bovine necrotic meningoencephalitis. These two pathogens not only exhibit a high correlation in antigenicity and genetic background but, more importantly, can establish latent infections within the bovine ganglion.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Universidad de Ciencias Ambientales y Aplicadas (UDCA), 111166. Bogotá D.C, Bogotá, 111166, Colombia.
Background: Bovine respiratory disease complex (BRDC) is a widely distributed and multifactorial syndrome, leading to significant economic losses to the cattle industry. Many viruses are considered causative agents of BRDC, including bovine herpesvirus 1 (BoHV-1), bovine respiratory syncytial virus (BRSV), and parainfluenza virus 3 (PI-3). This study aimed to determine the seroprevalence of BoHV-1, BRSV, and PI-3 in serum samples collected from cattle in Villavicencio, Colombia.
View Article and Find Full Text PDFVaccine
January 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China. Electronic address:
Bovine herpesvirus type 1 (BoHV-1) is a widespread respiratory infection that significantly impacts cattle health worldwide. To address this issue in China, we previously developed a novel double gene-deleted vaccine targeting gG and tk. In this study, we further evaluated the efficacy of this vaccine by challenging vaccinated cattle with a prevalent wild-type BoHV-1 strain and comparing its effectiveness against a commercially available inactivated BoHV-1 vaccine.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Life Sciences, Hebei University, Baoding 071002, China.
Bovine herpesvirus 1 (BoHV-1) productive infection induces the generation of DNA double-strand breaks (DSBs), which may consequently lead to cell apoptosis. In response to DSBs, the DNA damage repair-related protein 53BP1 is recruited to the sites of DSBs, leading to the formation of 53BP1foci, which are crucial for the repair of damaged DNA and maintaining genomic integrity by repairing DSBs. In this study, we discovered that HMGA1 may play a significant role in counteracting virus infection-induced DNA damage, as the siRNA-mediated knockdown of HMGA1 protein expression or inhibition of HMGA1 activity by the chemical inhibitor Netropsin uniformly exacerbates the DNA damage induced by BoHV-1 productive infection.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
Background: Infectious bovine rhinotracheitis (IBR) is a global contagious respiratory disease of ruminants caused by Bovine Herpes virus-1 (BoHV-1). It causes substantial financial losses in the dairy industry worldwide and is considered one of the most important causative agents of abortion and reproductive problems in dairy cattle.
Aim: This study aimed to estimate the seroprevalence of IBR and the related risk factors in the dairy population in Gharbia governorate, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!